ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Câu 63 đến câu 71 trang 179-182 SGK Đại số và Giải tích 11 Nâng cao

Hãy chọn kết quả đúng trong các kết quả đã cho.
Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hãy chọn kết quả đúng trong các kết quả đã cho.

Câu 63

🌸a. \(\lim {{n - 2\sqrt n \sin 2n} \over {2n}}\) là :

A. 1

B.  \({1 \over 2}\)

C. -1

D. 0

𒁃b. \(\lim {{{n^2} - 3{n^3}} \over {2{n^3} + 5n - 2}}\) là :

A.  \({1 \over 2}\)

B.  \({1 \over 5}\)

C.  \({-3 \over 2}\)

D. 0

🐻c.\(\lim {{{3^n} - 1} \over {{2^n} - {2}.3^n + 1}}\) là :

A.  \({-1 \over 2}\)

B.  \({3 \over 2}\)

C.  \({1 \over 2}\)

D. -1

d.\(\lim \left( {2n - 3{n^3}} \right)\) là :

A. +∞

B. −∞

C. 2

D. -3

Lời giải chi tiết:

💙a.  \(\eqalign{& \lim {{n - 2\sqrt n \sin 2n} \over {2n}} = \lim \left( {{1 \over 2} - {{\sin 2n} \over {\sqrt n }}} \right) = {1 \over 2} \cr & \text{vì }\,\left| {{{\sin 2n} \over {\sqrt n }}} \right| \le {1 \over {\sqrt n }},\lim {1 \over {\sqrt n }} = 0. \cr} \)

Chọn B

🀅b.  \(\lim {{{n^2} - 3{n^3}} \over {2{n^3} + 5n - 2}} = \lim {{{1 \over n} - 3} \over {2 + {5 \over {{n^2}}} - {2 \over {{n^3}}}}} = - {3 \over 2}.\)

Chọn C

🧜c.  \(\lim {{{3^n} - 1} \over {{2^n} - {{2.3}^n} + 1}} = \lim {{1 - {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - 2 + {{\left( {{1 \over 3}} \right)}^n}}} = - {1 \over 2}\)

Chọn A

🅷d.  \(\lim \left( {2n - 3{n^3}} \right) = \lim {n^3}\left( {{2 \over {{n^2}}} - 3} \right) = - \infty \)

Chọn B

Câu 64

a.\(\lim {{{n^3} - 2n} \over {1 - 3{n^2}}}\) là :

A.  \({-1 \over 3}\)

B.  \({2 \over 3}\)

C.  +∞

D.  −∞

b. \(\lim \left( {{2^n} - {5^n}} \right)\) là :

A. +∞

B. 1

C. −∞

D.  \({5 \over 2}\)

๊c.\(\lim \left( {\sqrt {n + 1} - \sqrt n } \right)\) là :

A. +∞

B. −∞

C. 0

D. 1

d.\(\lim {1 \over {\sqrt {{n^2} + n} - n}}\) là :

A. +∞

B. 0

C. 2

D. -2

Lời giải chi tiết:

𒁏a.  \(\lim {{{n^3} - 2n} \over {1 - 3{n^2}}} = \lim {{1 - {2 \over {{n^2}}}} \over {{1 \over {{n^3}}} - {3 \over n}}} = - \infty \)

Chọn D

🧸b.  \(\lim \left( {{2^n} - {5^n}} \right) = \lim {5^n}\left[ {{{\left( {{2 \over 5}} \right)}^n} - 1} \right] = - \infty \)

Chọn C

ꦇc.  \(\lim \left( {\sqrt {n + 1} - \sqrt n } \right) = \lim {1 \over {\sqrt {n + 1} + \sqrt n }} = 0\)

Chọn C

꧒d.  \(\lim {1 \over {\sqrt {{n^2} + n} - n}} = \lim {{\sqrt {{n^2} + n} + n} \over n} \)

෴\(= \lim \left( {\sqrt {1 + {1 \over n}} + 1} \right) = 2\)

Chọn C

Câu 65

a.\(\lim {{1 - {2^n}} \over {{3^n} + 1}}\) là :

A.  \({-2 \over 3}\)

B. 0

C. 1

D.  \({1 \over 2}\)

b. Tổng của cấp số nhân vô hạn

🥂\( - {1 \over 2},{1 \over 4}, - {1 \over 8},...,{{{{\left( { - 1} \right)}^n}} \over {{2^n}}},...\)

Là :

A.  \({-1 \over 4}\)

B.  \({1 \over 2}\)

C. -1

D.  \({-1 \over 3}\)

💫c. Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số :

A.  \({6 \over 11}\)

B.  \({46 \over 90}\)

C.  \({43 \over 90}\)

D.  \({47 \over 90}\)

Lời giải chi tiết:

🃏a.  \(\lim {{1 - {2^n}} \over {{3^n} + 1}} = \lim {{{{\left( {{1 \over 3}} \right)}^n} - {{\left( {{2 \over 3}} \right)}^n}} \over {1 + {{\left( {{1 \over 3}} \right)}^n}}} = 0\)

Chọn B

🀅b. Công bội  \(q = {{{u_2}} \over {{u_1}}} = {1 \over 4}:\left( { - {1 \over 2}} \right) = - {1 \over 2}\)

🐎\(S = {{{u_1}} \over {1 - q}} = {{ - {1 \over 2}} \over {1 + {1 \over 2}}} = - {1 \over 3}\)

Chọn D

c.  

\(\eqalign{
& 0,5111... = 0,5 + 0,01 + 0,001 + ... \cr 
♎ & = {1 \over 2} + \left( {{1 \over {100}} + {1 \over {1000}} + ...} \right) = {1 \over 2} + {{{1 \over {100}}} \over {1 - {1 \over {10}}}} = {{46} \over {90}} \cr} \)

Chọn B

Câu 66

♈a. Trong bốn giới hạn sau đây giới hạn nào là -1 ?

A.  \(\lim {{2n + 3} \over {2 - 3n}}\)

B.  \(\lim {{{n^2} - {n^3}} \over {2{n^3} + 1}}\)

C.  \(\lim {{{n^2} + n} \over { - 2n - {n^2}}}\)

D.  \(\lim {{{n^3}} \over {{n^2} + 3}}\)

𒅌b. Trong bốn giới hạn sau đây, giới hạn nào là +∞ ?

A.  \(\lim {{{n^2} - 3n + 2} \over {{n^2} + n}}\)

🧸B.  \(\lim {{{n^3} + 2n - 1} \over {n - 2{n^3}}}\)

C.  \(\lim {{2{n^2} - 3n} \over {{n^3} + 3n}}\)

D.  \(\lim {{{n^2} - n + 1} \over {2n - 1}}\)

🔴c. Trong bốn giới hạn sau đây, giới hạn nào là 0 ?

🌺A.  \(\lim {{{2^n} + 1} \over {{{3.2}^n} - {3^n}}}\)

B.  \(\lim {{{2^n} + 3} \over {1 - {2^n}}}\)

C.  \(\lim {{1 - {n^3}} \over {{n^2} + 2n}}\)

ꦫD.  \(\lim {{\left( {2n + 1} \right){{\left( {n - 3} \right)}^2}} \over {n - 2{n^3}}}\)

Lời giải chi tiết:

a.

\(\eqalign{
& \lim {{2n + 3} \over {2 - 3n}} = \lim {{2 + {3 \over n}} \over {{2 \over n} - 3}} = - {2 \over 3} \cr 
& \lim {{{n^2} - {n^3}} \over {2{n^3} + 1}} = \lim {{{1 \over n} - 1} \over {2 + {1 \over {{n^3}}}}} = - {1 \over 2} \cr 
& \lim {{{n^2} + n} \over { - 2n - {n^2}}} = \lim {{1 + {1 \over n}} \over { - {2 \over n} - 1}}=-1 \cr 
🎃 & \lim {{{n^3}} \over {{n^2} + 3}} = + \infty \cr} \)

Chọn C

b.

\(\eqalign{
& \lim {{{n^2} - 3n + 2} \over {{n^2} + n}} = \lim {{1 - {3 \over n} + {2 \over {{n^2}}}} \over {1 + {1 \over n}}} = 1 \cr 
& \lim {{{n^3} + 2n - 1} \over {n - 2{n^3}}} = \lim {{1 + {2 \over {{n^2}}} - {1 \over {{n^3}}}} \over {{1 \over {{n^2}}} - 2}} = - {1 \over 2} \cr 
& \lim {{2{n^2} - 3n} \over {{n^3} + 3n}} = \lim {{{2 \over n} - {3 \over {{n^2}}}} \over {1 + {3 \over {{n^2}}}}} = 0 \cr 
𓄧 & \lim {{{n^2} - n + 1} \over {2n - 1}} = \lim {{1 - {1 \over n} + {1 \over {{n^2}}}} \over {{2 \over n} - {1 \over {{n^2}}}}} = + \infty \cr} \)

Chọn D

c.

\(\eqalign{
& \lim {{{2^n} + 1} \over {{{3.2}^n} - {3^n}}} = \lim {{{{\left( {{2 \over 3}} \right)}^n} + {{\left( {{1 \over 3}} \right)}^n}} \over {3.{{\left( {{2 \over 3}} \right)}^n} - 1}} = 0 \cr 
& \lim {{{2^n} + 3} \over {1 - {2^n}}} = \lim {{1 + {3 \over {{2^n}}}} \over {{{\left( {{1 \over 2}} \right)}^n} - 1}} = - 1 \cr 
& \lim {{1 - {n^3}} \over {{n^2} + 2n}} = - \infty \cr 
▨ & \lim {{\left( {2n + 1} \right){{\left( {n - 3} \right)}^2}} \over {n - 2{n^3}}} = - 1 \cr} \)

Chọn A

Câu 67

Hãy chọn kết quả đúng trong các kết quả sau đây :

🌃a.\(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3} \over {{x^3} + 2}}\) là :

A. 2

B. 1

C. -2

D.  \( - {3 \over 2}\)

🍷b.\(\mathop {\lim }\limits_{x \to 3} \sqrt {{{{x^2}} \over {{x^3} - x - 6}}} \) là :

A.  \(  {1 \over 2}\)

B. 2

C. 3

D.  \({{\sqrt 2 } \over 2}\)

🐽c.\(\mathop {\lim }\limits_{x \to - 4} {{{x^2} + 3x - 4} \over {{x^2} + 4x}}\)

 là :

A.  \(  {5 \over 4}\)

B. 1

C.  \( - {5 \over 4}\)

D. -1

Lời giải chi tiết:

ඣa.  \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3} \over {{x^3} + 2}} = {{1 - 3} \over { - 1 + 2}} = - 2\)

Chọn C

🌼b.  \(\mathop {\lim }\limits_{x \to 3} \sqrt {{{{x^2}} \over {{x^3} - x - 6}}} = \sqrt {{9 \over {27 - 3 - 6}}} = {{\sqrt 2 } \over 2}\)

Chọn D

💝c.  \(\mathop {\lim }\limits_{x \to - 4} {{{x^2} + 3x - 4} \over {{x^2} + 4x}} = \mathop {\lim }\limits_{x \to - 4} {{\left( {x - 1} \right)\left( {x + 4} \right)} \over {x\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to - 4} {{x - 1} \over x} = {5 \over 4}\)

Chọn A.

Câu 68

Hãy chọn kết quả đúng trong các kết quả sau đây :

🌱a.\(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} - 3} \over {{x^6} + 5{x^5}}}\) là :

A. 2

B. 0

C.  \( - {3 \over 5}\)

D. -3

💦b.\(\mathop {\lim }\limits_{x \to - \infty } {{ - 3{x^5} + 7{x^3} - 11} \over {{x^5} + {x^4} - 3x}}\) là :

A. 0

B. -3

C. 3

D. -∞

💙c.\(\mathop {\lim }\limits_{x \to - \infty } {{ - 2{x^5} + {x^4} - 3} \over {3{x^2} - 7}}\) là :

A. −∞

B. -2

C. 0

D. +∞

Lời giải chi tiết:

a.  

🐷\(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} - 3} \over {{x^6} + 5{x^5}}} = \mathop {\lim }\limits_{x \to + \infty } {{{2 \over {{x^4}}} - {3 \over {{x^6}}}} \over {1 + {5 \over x}}} = 0\)

Chọn B

b.  

🔴\(\mathop {\lim }\limits_{x \to - \infty } {{ - 3{x^5} + 7{x^3} - 11} \over {{x^5} + {x^4} - 3x}} = \mathop {\lim }\limits_{x \to - \infty } {{ - 3 + {7 \over {{x^2}}} - {{11} \over {{x^5}}}} \over {1 + {1 \over x} - {3 \over {{x^4}}}}} = - 3\)

Chọn B

c.  

﷽\(\mathop {\lim }\limits_{x \to - \infty } {{ - 2{x^5} + {x^4} - 3} \over {3{x^2} - 7}} = \mathop {\lim }\limits_{x \to - \infty } {{ - 2 + {1 \over x} - {3 \over {{x^5}}}} \over {{3 \over {{x^3}}} - {7 \over {{x^5}}}}} = + \infty \)

Chọn D

Câu 69

Hãy chọn kết quả đúng trong các kết quả sau đây

𒉰a.\(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {\sqrt {{x^2} - 1} }}\) là :

A. 1

B. -1

C. 0

D. +∞

ཧb.\(\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - x} - 1} \over x}\) là :

A.  \({1 \over 2}\)

B.  \(-{1 \over 2}\)

C. +∞

D. 0

♛c.\(\mathop {\lim }\limits_{x \to 1} {{2x - 1} \over {{{\left( {x - 1} \right)}^2}}}\) là :

A. 2

B. -1

C. +∞

D. −∞

ꦑd.\(\mathop {\lim }\limits_{x \to - 1} {{{x^2} + x} \over {{x^2} + 3x + 2}}\) là

A. 2

B.  \({2 \over 3}\)

C. -1

D. 0

Lời giải chi tiết:

a.  

ℱ\(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {\sqrt {{x^2} - 1} }} = \mathop {\lim }\limits_{x \to + \infty } {{1 - {1 \over x}} \over {\sqrt {1 - {1 \over {{x^2}}}} }} = 1\)

Chọn A

b.  

𒅌\(\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - x} - 1} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over {x\left( {\sqrt {1 - x} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} {{ - 1} \over {\sqrt {1 - x} + 1}} = - {1 \over 2}\)

Chọn B

🎶c.  \(\mathop {\lim }\limits_{x \to 1} {{2x - 1} \over {{{\left( {x - 1} \right)}^2}}} = + \infty \)

Chọn C

d.  

⛄\(\mathop {\lim }\limits_{x \to - 1} {{{x^2} + x} \over {{x^2} + 3x + 2}} = \mathop {\lim }\limits_{x \to - 1} {{x\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to - 1} {x \over {x + 2}} = - 1\)

Chọn C

Câu 70

♛a. Trong bốn giới hạn sau đây, giới hạn nào là -1 ?

💫A.  \(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} + x - 1} \over {3x + {x^2}}}\)

♒B.  \(\mathop {\lim }\limits_{x \to - \infty } {{2x + 3} \over {{x^2} - 5x}}\)

﷽C.  \(\mathop {\lim }\limits_{x \to + \infty } {{{x^3} - {x^2} + 3} \over {5{x^2} - {x^3}}}\)

𒊎D.  \(\mathop {\lim }\limits_{x \to - \infty } {{{x^2} - 1} \over {x + 1}}\)

🐠b. Trong bốn giới hạn sau đây, giới hạn nào là 0 ?

ℱA.  \(\mathop {\lim }\limits_{x \to 1} {{x - 1} \over {{x^3} - 1}}\)

🀅B.  \(\mathop {\lim }\limits_{x \to - 2} {{2x + 5} \over {x + 10}}\)

𒆙C.  \(\mathop {\lim }\limits_{x \to 1} {{{x^2} - 1} \over {{x^2} - 3x + 2}}\)

🌞D.  \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right)\)

𝄹c. Trong bốn giới hạn sau đây, giới hạn nào không tồn tại ?

❀A.  \(\mathop {\lim }\limits_{x \to - \infty } {{2x + 1} \over {{x^2} + 1}}\)

🌳B.  \(\mathop {\lim }\limits_{x \to + \infty } \cos x\)

ꦫC.  \(\mathop {\lim }\limits_{x \to 0} {x \over {\sqrt {x + 1} }}\)

🅺D.  \(\mathop {\lim }\limits_{x \to - 1} {x \over {{{\left( {x + 1} \right)}^2}}}\)

Lời giải chi tiết:

a.

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{2{x^2} + x - 1} \over {3x + {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } {{2 + {1 \over x} - {1 \over {{x^2}}}} \over {{3 \over x} + 1}} = 2 \cr 
& \mathop {\lim }\limits_{x \to - \infty } {{2x + 3} \over {{x^2} - 5x}} = \mathop {\lim }\limits_{x \to - \infty } {{{2 \over x} + {3 \over {{x^2}}}} \over {1 - {5 \over x}}} = 0 \cr 
& \mathop {\lim }\limits_{x \to + \infty } {{{x^3} - {x^2} + 3} \over {5{x^2} - {x^3}}} = \mathop {\lim }\limits_{x \to + \infty } {{1 - {1 \over x} + {3 \over {{x^3}}}} \over {{5 \over x} - 1}} = - 1 \cr 
ღ & \mathop {\lim }\limits_{x \to - \infty } {{{x^2} - 1} \over {x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1} \right) = - \infty \cr} \)

Chọn C

b.

\(\eqalign{
& \mathop {\lim }\limits_{x \to 1} {{x - 1} \over {{x^3} - 1}} = \mathop {\lim }\limits_{x \to 1} {1 \over {{x^2} + x + 1}} = {1 \over 3} \cr 
& \mathop {\lim }\limits_{x \to - 2} {{2x + 5} \over {x + 10}} = {1 \over 8} \cr 
& \mathop {\lim }\limits_{x \to 1} {{{x^2} - 1} \over {{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} {{x + 1} \over {x - 2}} = - 2 \cr 
✅ & \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)

Chọn D

c.

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{2x + 1} \over {{x^2} + 1}} = 0 \cr 
& \mathop {\lim }\limits_{x \to 0} {x \over {\sqrt {x + 1} }} = 0 \cr 
♕ & \mathop {\lim }\limits_{x \to - 1} {x \over {{{\left( {x + 1} \right)}^2}}} = - \infty \cr} \)

꧒Không tồn tại \(\mathop {\lim }\limits_{x \to + \infty } \cos x\) (chọn 2 dãy  \({x_n} =  2n\pi \) và \(x{'_n} = {\pi \over 2} + 2n\pi \);\(\;\mathop {\lim }\limits\cos x{'_n} = 0\);\(\;\mathop {\lim }\limits\cos x{_n} = 1\))

Chọn B.

Câu 71

Tìm khẳng định đúng trong các khẳng định sau :

Hàm số

ဣ\(f\left( x \right) = \left\{ {\matrix{{{{{x^2}} \over x}\,\text{ với }\,x < 1,x \ne 0} \cr {0\,\text{ với }\,x = 0} \cr {\sqrt x \,\text{ với }\,x \ge 1} \cr} } \right.\)

ꦰA. Liên tục tại mọi điểm trừ các điểm x thuộc đoạn [0 ; 1]

B. Liên tục tại mọi điểm thuộc \(\mathbb R\).

C. Liên tục tại mọi điểm trừ điểm x = 0

D. Liên tục tại mọi điểm trừ điểm x = 1.

Lời giải chi tiết:

Tập xác định \(D =\mathbb R\)

ཧf liên tục trên  \(\left( { - \infty ;0} \right);\left( {0;1} \right)\,va\,\left( {1; + \infty } \right)\)

𒁃Tại x = 0  \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {{{x^2}} \over x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 \right)\)

Suy ra f liên tục tại x = 0

🅰Tại x = 1  \(\mathop {\lim }\limits_{x \to {1^ - }} = \mathop {\lim }\limits_{x \to {1^ - }} {{{x^2}} \over x} = 1\)

⛎\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x = 1 = f\left( 1 \right)\)

𒆙Vậy f liên tục tại \(x = 1\) nên f liên tục tại mọi điểm thuộc \(\mathbb R\).

Chọn B

ufaindo.xyz

Quảng cáo

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close
𝓀{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan 25}|🔯{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số ap}|🀅{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số co}|{đa ga thomo truc tiep hom nay}|🀅{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số nthusa}|