Cho tam giác \(ABC\) có các đường trung tuyến \(BD\) và \(CE\). Lấy các điểm \(H,K\) sao cho \(E\) là trung điểm của \(CH,D\) là trung điểm của \(BK\). Chứng minh:
🌱
Xem lời giải
Cho hình thang cân \(ABCD\) có \(AB//CD,AB < CD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(P\), hai cạnh bên \(AD\) và \(BC\) kéo dài cắt nhau tại \(Q\).
༒
Xem lời giải
Góc kề bù với một góc của tứ giác được gọi là góc ngoài của tứ giác. Chứng minh tổng các góc ngoài của tứ giác \(ABCD\) ở Hình 7 (tại mỗi đỉnh chỉ nhọn một góc ngoài):
🔴
Xem lời giải
Cho tứ giác \(ABCD\) có \(E,F,G,H\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Điều kiện của tứ giác \(ABCD\) để tứ giác \(EFGH\) là hình chữ nhật là:
💯
Xem lời giải
Cho tam giác \(ABC\) nhọn có các đường cao \(BD,CE\). Tia phân giác của các góc \(ACE,ABD\) cắt nhau tại \(O\) và cắt \(AB,AC\) lần lượt tại \(M,N\).
🥃
Xem lời giải