Giải bài 10 trang 30 Chuyên đề học tập Toán 10 – Cánh diềuGiả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/ năm. Hết năm đầu, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Quảng cáo
Đề bài Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/ năm. Hết năm đầu, cô Hạnh không rút tiền ra và gửi thêm A (đồng) nữa. Hết năm thứ hai, cô Hạnh cũng không rút tiền ra và lại gửi thêm A (đồng) nữa. Cứ tiếp tục như vậy cho những năm sau. Chứng minh số tiền cả vốn lẫn lãi mà cô Hạnh có đượcꩵ sau n (năm) là \({T_n} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right]\) (đồng), nếu trong khoảng thời gian này lãi suất không đổi. Lời giải chi tiết Ta chứng minh “Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau n (năm) là \({T_n} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^n} - 1} \right]\) (đồng)” bằng phương pháp quy nạp.Bước 1: Khi \(n = 1\) ta cóSố tiền cả vốn lẫn lãi mà cô Hạnh có được sau 1 năm là: \(A + r\% .A = A.\left( {1 + \frac{r}{{100}}} \right) = \frac{{A(100 + r)}}{{100}}\)(đồng)Và \({T_1} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^1} - 1} \right] = \frac{{A(100 + r)}}{r}.\frac{r}{{100}} = \frac{{A(100 + r)}}{{100}}\)(đồng)Như vậy mệnh đề đúng với \(n = 1\)Bước 2: Với k là một số nguyên dương tùy ý mà mệnh đề đúng, ta phải chứng minh mệnh đề đúng với k+1, tức là:“Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau \(k + 1\) năm là: \({T_{k + 1}} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^{k + 1}} - 1} \right]\) (đồng)”Thật vậy, theo giả thiết quy nạp ta có:Số tiền cả vốn lẫn lãi mà cô Hạnh có được sau \(k\) năm là: \({T_k} = \frac{{A(100 + r)}}{r}\left[ {{{\left( {1 + \frac{r}{{100}}} \right)}^k} - 1} \right]\) (đồng)
Quảng cáo
Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí |