Giải bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thứcMột túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính (Eleft( X right).) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.⛄Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính \(E\left( X \right).\) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.Phương pháp giải - Xem chi tiết
Bước 1: Tính xác suất của các biến cố
Bước 2: Lập bảng phân bố xác suất
Bước 3: Tính \(E\left( X \right)\)theo công thức
Lời giải chi tiết X là số thẻ đỏ trong ba thẻ rút ra \( \Rightarrow \) Giá trị của X thuộc tập {0; 1; 2; 3}. Số kết quả có thể là: \(C_{16}^3 = 560\). Biến cố \(\left\{ {X = 0} \right\}\): “Rút được 3 thẻ xanh”. \( \Rightarrow P\left( {X = 0} \right) = \frac{{C_6^3}}{{C_{16}^3}} = \frac{2}{{56}}\) Biến cố \(\left\{ {X = 1} \right\}:\) “Rút được 1 thẻ đỏ và 2 thẻ xanh”. \( \Rightarrow P\left( {X = 1} \right) = \frac{{C_{10}^1.C_6^2}}{{C_{16}^3}} = \frac{{15}}{{56}}\) Biến cố \(\left\{ {X = 2} \right\}:\) “Rút được 2 thẻ đỏ và 1 thẻ xanh”. \( \Rightarrow P\left( {X = 2} \right) = \frac{{C_{10}^2.C_6^1}}{{C_{16}^3}} = \frac{{27}}{{56}}\) Biến cố \(\left\{ {X = 3} \right\}:\) “Rút được 3 thẻ đỏ”. \( \Rightarrow P\left( {X = 3} \right) = \frac{{C_{10}^3}}{{C_{16}^3}} = \frac{{12}}{{56}}\) Bảng phân bố xác suất của X là
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |