Giải bài 13 trang 77 sách bài tập toán 11 - Chân trời sáng tạo tập 1Trong mặt phẳng tọa độ Oxy, đường thẳng \(d:x + y = 2\) cắt trục hoành tại điểm A và cắt đường thẳng \({d_n}:y = \frac{{2n + 1}}{n}x\) tại điểm \({P_n}\left( {n \in \mathbb{N}*} \right)\). Kí hiệu \({S_n}\) là diện tích của tam giác \(OA{P_n}\). Tính \(\lim {S_n}\).✨Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Trong mặt phẳng tọa độ Oxy, đường thẳng \(d:x + y = 2\) cắt trục hoành tại điểm A và cắt đường thẳng \({d_n}:y = \frac{{2n + 1}}{n}x\) tại điểm \({P_n}\left( {n \in \mathbb{N}*} \right)\). Kí hiệu \({S_n}\) là diện tích của tam giác \(OA{P_n}\). Tính \(\lim {S_n}\).Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về một số giới hạn cơ bản để tính: \(\lim {q^n} = 0\) (q là số thực, \(\left| q \right| < 1\)), \(\lim c = c\) (c là hằng số). Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |