Giải bài 2 trang 111 vở thực hành Toán 9 tập 2Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếpPhương pháp giải - Xem chi tiết
+ Chứng minh OP, ON, OM lần lượt là các đường cao của các tam giác AOB, AOC, BOC.
+ Tứ giác ANOP có \(\widehat {ANO} = \widehat {APO} = {90^0}\) nên tứ giác ANOP nội tiếp đường tròn có tâm là trung điểm của AO và bán kính bằng \(\frac{{AO}}{2}\).
+ Chứng minh tương tự ta có BPOM, CMON cũng là các tứ giác nội tiếp.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |