Giải bài 4 trang 130, 131 vở thực hành Toán 9 tập 2Giải các phương trình sau: a) (frac{2}{{x + 1}} - frac{{2x}}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}}); b) (frac{{x + 1}}{{2x - 1}} - frac{2}{{2x + 1}} = frac{{2{x^2}}}{{4{x^2} - 1}}).
Toán - Văn - Anh
Quảng cáo
Đề bài Giải các phương trình sau: a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\); b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).Phương pháp giải - Xem chi tiết
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình. Bước 2.🍬 Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3. Giải phương trình vừa tìm được. Bước 4 (Kết luận).൲ Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Lời giải chi tiết a) ĐKXĐ: \(x \ne - 1\). Ta có: \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\) \(\frac{{2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{{x^3} + 1}}\) \(\frac{{ - 4x + 2}}{{{x^3} + 1}} = \frac{3}{{{x^3} + 1}}\) \( - 4x + 2 = 3\) \(x = - \frac{1}{4}\) (thỏa mãn ĐKXĐ) Vậy phương trình đã cho có nghiệm là \(x = - \frac{1}{4}\). b) ĐKXĐ: \(x \ne \pm \frac{1}{2}\). Ta có: \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\) \(\frac{{\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\) \(\frac{{2{x^2} - x + 3}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\) \(2{x^2} - x + 3 = 2{x^2}\) \(x = 3\) (thỏa mãn ĐKXĐ)Vậy phương trình đã cho có nghiệm \(x = 3\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |