Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \).๊Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \). a) Tính theo a thể tích khối chóp \(S.ABCD.\) b) Tính theo a khoảng cách giữa hai đường thẳng \(AD\) và \(SB\).Phương pháp giải - Xem chi tiết
a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).
Áp dụng định lý Pytago tính : \(SO = \sqrt {S{A^2} - O{A^2}} \).
Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO\)
Lời giải chi tiết a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).Ta có tam giác \(SAO\) vuông tại \(O\) nên theo định lí Pythagore: \(SO = \sqrt {S{A^2} - O{A^2}} = \frac{{a\sqrt 6 }}{2}\).Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{{{a^3}\sqrt 6 }}{6}.\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |