Giải Bài 53 trang 57 sách bài tập toán 7 tập 1 - Cánh diềuTìm một số tự nhiên có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.
Toán - Văn - Anh - Khoa học tự nhiên...
Quảng cáo
Đề bài Tìm một số tự nhiên có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.Phương pháp giải - Xem chi tiết
Ta tìm số đó dựa vào điều kiện đề bài đã cho: chia hết cho 18 tức số đó chia hết cho cả 2 và 9; và áp dụng tính chất của dãy tỉ số bằng nhau
Lời giải chi tiết Gọi ba chữ số của số tự nhiên cần tìm là a, b, c (\( a,b,c\in N; 0 \le a,b,c \le 9\)). Khi đó: \(\left\{ \begin{array}{l}\left[ \begin{array}{l}a \ne 0\\b \ne 0\\c \ne 0\end{array} \right.\\1 \le a + b + c \le 27\end{array} \right.\).Vì số tự nhiên này chia hết cho 18 nên nó chia hết cho cả 2 và 9.Do số đó chia hết cho 9 nên tổng các chữ số của nó chia hết cho 9 hay \(a + b + c{\rm{ }} \vdots {\rm{ }}9 \to \left[ \begin{array}{l}a + b + c = 9\\a + b + c = 18\\a + b + c = 27\end{array} \right.\) .Mặt khác, các chữ số của nó tỉ lệ với 1; 2; 3 nên:\(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} = \dfrac{{a + b + c}}{{1 + 2 + 3}} = \dfrac{{a + b + c}}{6}\).Mà a, b, c🔜 là các số tự nhiên nên \(a + b + c{\rm{ }} \vdots {\rm{ 6 }} \Rightarrow a + b + c = 18\). Suy ra: \(\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} = \dfrac{{a + b + c}}{6} = \dfrac{{18}}{6} = 3\).Do đó: \(\left\{ \begin{array}{l}a = 3{\rm{ }}.{\rm{ }}1 = 3\\b = 3{\rm{ }}.{\rm{ }}2 = 6\\c = 3{\rm{ }}.{\rm{ }}3 = 9\end{array} \right.\).Vậy số cần tìm là 396 hoặc 936.
Quảng cáo
Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |