Giải bài 6 trang 110 sách bài tập toán 12 - Chân trời sáng tạoBảng sau đây ghi lại khoảng thời gian hoàn thành đường bơi 500 m của một số học viên. a) Xác định khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu phép nhóm trên (kết quả làm tròn đến hàng phần trăm). b) Xác định phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên. c) Xác định số giá trị ngoại lệ trong mẫu số liệu trên.𒁃Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Bảng sau đây ghi lại khoảng thời gian hoàn thành đường bơi 500 m của một số học viên.Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)
trong đó:
• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;
• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);
• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);
• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).
‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:
\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)
‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).
‒ Nếu \({Q_1} - 1,5\Delta Q > a\) hoặc \({Q_3} + 1,5\Delta Q < a\) thì giá trị \(a\) là giá trị ngoại lệ.
Lời giải chi tiết a) Ta có bảng sau:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |