Giải bài 67 trang 26 sách bài tập toán 12 - Cánh diềuTổng chi phí để sản xuất (x) sản phẩm của một xí nghiệp được tính theo công thức (T = 20x + 100{rm{ }}000) (nghìn đồng). a) Viết công thức tính chi phí trung bình (Cleft( x right)) của 1 sản phẩm khi sản xuất được (x) sản phẩm. b) Xem (y = Cleft( x right)) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. c) Xét tính đơn điệu của hàm số (y = Cleft( x right)) trên khoảng (left( {0; + infty } right)).
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Quảng cáo
Đề bài Tổng chi phí để sản xuất \(x\) sản phẩm của một xí nghiệp được tính theo công thức \(T = 20x + 100{\rm{ }}000\) (nghìn đồng). a) Viết công thức tính chi phí trung bình \(C\left( x \right)\) của 1 sản phẩm khi sản xuất được \(x\) sản phẩm. b) Xem \(y = C\left( x \right)\) là một hàm số xác định trên khoảng \(\left( {0; + \infty } \right)\), hãy tìm tiệm cận ngang của đồ thị hàm số đó. c) Xét tính đơn điệu của hàm số \(y = C\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\). d) Nêu nhận xét về chi phí để tạo ra 1 sản phẩm khi \(x\) càng lớn.Phương pháp giải - Xem chi tiết
Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết a) Công thức tính chi phí trung bình \(C\left( x \right)\) của 1 sản phẩm khi sản xuất được \(x\) sản phẩm là: \(C\left( x \right) = \frac{{20x + 100000}}{x}\). b) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{20x + 100000}}{x} = 20\) Vậy \(y = 20\) là tiệm cận ngang của đồ thị hàm số đã cho. c) Ta có: \({y^\prime } = \frac{{ - 100000}}{{{x^2}}} < 0,\forall x \in \left( {0; + \infty } \right)\) Bảng biến thiên của hàm số:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |