Giải bài 7.44 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCho tứ diện đều \(ABCD\)có cạnh bằng\(a\), côsin của góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\)bằng🍌Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho tứ diện đều \(ABCD\)có cạnh bằng\(a\), côsin của góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\)bằngA. \(\frac{1}{3}\). B. \(\frac{{\sqrt 3 }}{3}\). C. \(\frac{{\sqrt 3 }}{2}\). D. \(\frac{1}{2}\). Phương pháp giải - Xem chi tiết
- Chóp có các cạnh bên bằng nhau có chân đường cao trùng với tâm đường tròn ngoại tiếp đáy.
- Góc giữa đường và mặt là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông.
Lời giải chi tiết 🐽Gọi \(M\)là trung điểmcủa \(CD,O\) là tâm đường tròn ngoại tiếp tam giác đều \(BCD\)⇒\(AO \bot (BCD)\) Khi đó \(OB\)là hình chiếu vuông góc của \(AB\) lên \((BCD)\)\( \Rightarrow (AB;(BCD)) = (AB;OB) = \widehat {ABO}\)Tam giác \(BCD\) đều cạnh a nên \(BM = \frac{{a\sqrt 3 }}{2} \Rightarrow BO = \frac{{2BM}}{3} = \frac{{a\sqrt 3 }}{3}\).Ta có \(AO \bot (BCD)\) nên\(AO \bot OB\), suy ra \(\Delta ABO\)vuông tại \(O\).⇒\(cos\widehat {ABO} = \frac{{OB}}{{AB}} = \frac{{\sqrt 3 }}{3}\) Vậy \(\cos (AB;(BCD)) = \frac{{\sqrt 3 }}{3}\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |