Giải bài tập 3 trang 79 SGK Toán 9 tập 2 - Cánh diềuCho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh: a)(widehat {CBM} = widehat {CAK}) b) Tam giác BHN cân. c) BC là đường trung trực của HN.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AK, BM cắt nhau tại trực tâm H của tam giác ABC. Tia AK cắt đường tròn (O) tại điểm N (khác A). Chứng minh: a) \(\widehat {CBM} = \widehat {CAK}\) b) Tam giác BHN cân. c) BC là đường trung trực của HN.Video hướng dẫn giải Phương pháp giải - Xem chi tiết
a) Chứng minh \(\widehat {CBM},\widehat {CAK}\) cùng phụ với \(\widehat {BAC}\).
b) Chứng minh \(\widehat {BHN} = {\widehat {BNA}}( = \widehat {KCM}).\)
c) Chứng minh \(\widehat {CBM} = \widehat {NBC}\), nên BK là đường phân giác của tam giác BHN và BK đồng thời là đường trung trực.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |