Giải bài tập 5 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạoGiá trị nhỏ nhất của hàm số \(y = \sqrt {{x^2} + 2x + 3} \) trên đoạn [–2; 3] là A. \(\sqrt 3 \) B. \(\sqrt {30} \) C. \(\sqrt 2 \) D. 0꧂Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Phương pháp giải - Xem chi tiết
Cho hàm số y = f(x) xác định trên tập hợp D.
- Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu f(x) \( \le \) M với mọi x thuộc D và tồn tại \({x_0}\) thuộc D sao cho f(\({x_0}\)) = M. Kí hiệu M = \(\mathop {\max }\limits_D \)f(x).
- Số m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu f(x) \( \ge \) m với mọi x thuộc D và tồn tại \({x_0}\) thuộc D sao cho f(\({x_0}\)) = m. Kí hiệu m = \(\mathop {\min }\limits_D \)f(x).
Lời giải chi tiết Chọn C Tập xác định: \(D = \mathbb{R}\) \(y' = \frac{{x + 1}}{{\sqrt {{x^2} + 2x + 3} }} = 0 \Leftrightarrow x = - 1\) Bảng biến thiên:
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |