Giải bài tập 5.44 trang 129 SGK Toán 9 tập 1 - Cùng khám pháCho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A, B là hai tiếp điểm) sao cho \(\Delta \)MAB là tam giác đều. Khoảng cách OM bằng A. \(\frac{1}{2}R\). B. R. C. 2R. D. \(R\sqrt 2 \).
Toán - Văn - Anh
Quảng cáo
Đề bài Cho MA và MB là hai tiếp tuyến của đường tròn (O; R) (A, B là hai tiếp điểm) sao cho \(\Delta \)MAB là tam giác đều. Khoảng cách OM bằng A. \(\frac{1}{2}R\). B. R. C. 2R. D. \(R\sqrt 2 \).Phương pháp giải - Xem chi tiết
+ Chứng minh \(\widehat {AMB} = {60^o}\).
+ Chứng minh MO là tia phân giác \(\widehat {AMB}\), nên \(\widehat {AMO} = \frac{1}{2}\widehat {AMB}\).
+ Chứng minh tam giác AOM vuông tại M nên \(AO = MO.\sin AMO\), từ đó tính được MO.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |