Giải bài 5.31 trang 36 sách bài tập toán 12 - Kết nối tri thứcTrong không gian Oxyz, côsin của góc giữa hai đường thẳng (Delta :left{ begin{array}{l}x = 1 + 2t\y = - 1 + t\z = - 2 + tend{array} right.) và (Delta ':frac{{x + 2}}{1} = frac{{y + 3}}{2} = frac{{z - 1}}{{ - 5}}) bằng A. (frac{{sqrt 5 }}{{30}}). B. (frac{{ - sqrt 5 }}{{30}}). C. (frac{{3sqrt 5 }}{{10}}). D. (frac{{ - 3sqrt 5 }}{{10}}).𓄧Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - ĐịaQuảng cáo
Đề bài Trong không gian Oxyz, côsin của góc giữa hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 + t\\z = - 2 + t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 1}}{{ - 5}}\) bằng A. \(\frac{{\sqrt 5 }}{{30}}\). B. \(\frac{{ - \sqrt 5 }}{{30}}\). C. \(\frac{{3\sqrt 5 }}{{10}}\). D. \(\frac{{ - 3\sqrt 5 }}{{10}}\).Phương pháp giải - Xem chi tiết
Xác định vectơ chỉ phương của hai đường thẳng sau đó tính cosin góc tạo bởi hai đường thẳng.
Lời giải chi tiết Vectơ chỉ phương của \(\Delta \) và \(\Delta '\) lần lượt là \(\overrightarrow u = \left( {2;1;1} \right)\) và \(\overrightarrow {u'} = \left( {1;2; - 5} \right)\). Ta có \(\cos \left( {\Delta ,\Delta '} \right) = \frac{{\left| {\overrightarrow u \cdot \overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow {u'} } \right|}} = \frac{{\left| {2 + 2 - 5} \right|}}{{\sqrt {4 + 1 + 1} \cdot \sqrt {1 + 4 + 25} }} = \frac{1}{{6\sqrt 5 }} = \frac{{\sqrt 5 }}{{30}}\). Vậy ta chọn đáp án A.
Quảng cáo
Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí |