Giải bài 7.17 trang 31 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngCho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông tâm (O) và các cạnh đều bằng ({rm{a}}).🎀Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - SinhQuảng cáo
Đề bài Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\) và các cạnh đều bằng \({\rm{a}}\). a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\). b) Tính góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\). c) Gọi \(M\) là trung điểm của cạnh \(SC\) và \(\alpha \) là góc giữa đường thẳng \(OM\) và mặt phẳng\(\left( {SBC} \right)\). Tính \({\rm{sin}}\alpha \).Phương pháp giải - Xem chi tiết
a) Chứng minh \(SO\) vuông góc với hai đường thẳng cắt nhau nằm trên \(ABCD\) rồi suy ra \(SO \bot \left( {ABCD} \right)\).
b) Chứng minh \(AO \bot \left( {SBD} \right)\).
Tìm hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBD} \right)\), do đó góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\) bằng góc giữa hai đường thẳng \(SA\) và hình chiếu của nó.
c) Kẻ \(OK \bot BC\) tại \(K,OH \bot SK\) tại \(H\) thì ta chứng minh \(OH \bot \left( {SBC} \right)\),
Tìm hình chiếu vuông góc của \(OM\) trên mặt phẳng \(\left( {SBC} \right)\).
Góc giữa đường thẳng \(OM\) và mặt phẳng \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(OM\) và hình chiếu của nó.
Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí |