Trắc nghiệm Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác Toán 7 Kết nối tri thứcĐề bài
Câu 1 :
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
Câu 2 :
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
Câu 3 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
Câu 4 :
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
Câu 5 :
Cho hình vẽ sau:
Câu 6 :
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
Câu 7 :
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Câu 8 :
Cho hình dưới đây.
Câu 9 :
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
Câu 10 :
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
Câu 11 :
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
Câu 12 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
Câu 13 :
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
Câu 14 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
Câu 15 :
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
Câu 16 :
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
Câu 17 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
Câu 18 :
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
Câu 19 :
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
Câu 20 :
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
Câu 21 :
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Câu 22
Phát biểu nào trong các phát biểu sau đây là đúng:
Câu 23
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
Câu 24 :
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Câu 25
Chọn câu đúng.
Câu 26
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
Lời giải và đáp án
Câu 1 :
Cho \(\Delta\)ABC có AB = AC và MB = MC (\(M \in BC\)).Chọn câu sai.
Đáp án : A Phương pháp giải :
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Lời giải chi tiết :
Vậy B, C, D đúng, A sai.
Câu 2 :
Cho tam giác \(MNP\) có MN = MP. Gọi \(A\) là trung điểm của \(NP.\) Biết \(\widehat {NMA} = {20^0}\) thì số đo góc \(MPN\) là:
Đáp án : C Phương pháp giải :
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Lời giải chi tiết :
Câu 3 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
Đáp án : C Phương pháp giải :
+ Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
+ Áp dụng định lý tổng ba góc trong tam giác, tìm góc chưa biết số đo trong tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\) ( các góc tương ứng)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\) \( = 130^\circ - 55^\circ = 75^\circ \)
Lại có \(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\) \( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Câu 4 :
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
Đáp án : B Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau
Lời giải chi tiết :
Câu 5 :
Cho hình vẽ sau:
Đáp án : D Phương pháp giải :
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Lời giải chi tiết :
Xét \(\Delta \)ABC và \(\Delta \)ADE, ta có:
AB = AD
BC = DE
AC = AE
\( \Rightarrow \Delta ABC = \Delta ADE\) ( c.c.c)
\( \Rightarrow \widehat {BAC} = \widehat {DAE};\widehat B = \widehat D;\widehat C = \widehat E\) ( các góc tương ứng)
Câu 6 :
Cho tam giác \(ABC\) có \(AB < AC\) . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi \(O\) là một điểm nằm ở trong tam giác sao cho \(OA = OC,OB = OE.\) Khi đó:
Đáp án : B Phương pháp giải :
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Áp dụng tính chất hai tam giác bằng nhau suy ra các cặp góc tương ứng bằng nhau.
Lời giải chi tiết :
Nên A, C, D sai, B đúng.
Câu 7 :
Cho hình vẽ sau. Tam giác bằng với tam giác DEA là:
Đáp án : B Phương pháp giải :
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Lời giải chi tiết :
Xét tam giác DEA và tam giác CBA, ta có:
DE = CB
EA = BA
DA = CA
\( \Rightarrow \Delta DEA = \Delta CBA\) ( c.c.c)
Chú ý
Thứ tự các đỉnh tương ứng của hai tam giác bằng nhau.
Câu 8 :
Cho hình dưới đây.
Đáp án : D Phương pháp giải :
2 tam giác có 3 cặp cạnh tương ứng bằng nhau thì 2 tam giác đó bằng nhau. ( c.c.c)
Sử dụng dấu hiệu nhận biết hai đường thẳng song song.
Lời giải chi tiết :
Xét tam giác \(ADC\) và \(CBA\) có
\(AB = CD\)
\(AD = BC\)
\(DB\) chung
\( \Rightarrow \Delta ADC = CBA\left( {c.c.c} \right)\)
Do đó \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng)
Mà hai góc ở vị trí so le trong nên \(AD//BC.\)
Tương tự ta có \(AB//DC.\)
Vậy A, B, C đúng, D sai.
Câu 9 :
Cho \(\Delta ABC = \Delta MNP.\) Biết AC = 6 cm, NP = 8 cm và chu vi của tam giác MNP bằng 22cm. Tìm khẳng định sai:
Đáp án : A Phương pháp giải :
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau
Chu vi tam giác bằng tổng độ dài 3 cạnh
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta MNP.\)
\( \Rightarrow \) AB = MN, BC = NP; AC = MP
Mà AC = 6 cm, NP = 8 cm
Nên MP = 6 cm, BC = 8 cm
Chu vi của tam giác MNP bằng 22cm nên MN + NP + MP = 22 cm hay MN + 8 + 6 = 22 cm nên MN = 8 cm
Do đó, AB = MN = 8 cm
Vậy các khẳng định B,C,D là đúng; khẳng định A sai.
Câu 10 :
Cho \(\Delta ABC = \Delta DEF.\) Cho \(\widehat E = 46^\circ \). Khẳng định đúng là:
Đáp án : B Phương pháp giải :
Khi 2 tam giác bằng nhau thì các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta DEF.\)
\( \Rightarrow \) ( 2 góc tương ứng)
\( \Rightarrow \widehat B = 46^\circ \)
Câu 11 :
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
Đáp án : B Lời giải chi tiết :
Ta có \(\Delta ABC = \Delta MNP\)\( \Leftrightarrow \left\{ \begin{array}{l}\widehat A = \widehat M\\\widehat C = \widehat P\\\widehat B = \widehat N\\AB = MN\\AC = MP\\BC = NP\end{array} \right.\)
Nên A, C, D đúng, B sai.
Câu 12 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
Đáp án : A Lời giải chi tiết :
\(\Delta ABC = \Delta DEF\)\( \Rightarrow \widehat D = \widehat A\) (hai góc tương ứng).
Nên \(\widehat D = 33^\circ .\)
Câu 13 :
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
Đáp án : B Lời giải chi tiết :
Xét tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\)\(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\) nên \(\Delta ABC = \Delta EFD\)
Câu 14 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
Đáp án : D Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc của một tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat D = \widehat A = 32^\circ ;\,\widehat B = \widehat E;\,\widehat C = \widehat F = 78^\circ \) (các góc tương ứng bằng nhau)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lý tổng ba góc trong tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat C = 180^\circ - 32^\circ - 78^\circ \)\( = 70^\circ .\)
Vậy \(\widehat B = \widehat E = 70^\circ .\)
Câu 15 :
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
Đáp án : C Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta MNP\) nên \(AB = MN = 5\,cm;\,AC = MP = 7\,cm;\,BC = NP\) (các cạnh tương ứng bằng nhau)
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 22\,cm \Rightarrow BC = 22 - AB - AC\)\( = 22 - 5 - 7 = 10\,cm.\)
Vậy \(NP = BC = 10\,cm.\)
Câu 16 :
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
Đáp án : A Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và công thức tính chu vi tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta DEF\) nên \(AB = DE = 6cm;\,AC = DF = 8cm;\,BC = EF = 10\,cm\) (các cạnh tương ứng bằng nhau).
Chu vi tam giác \(ABC\) là \(AB + BC + AC = 6 + 10 + 8 = 24\,cm.\)
Chu vi tam giác \(DEF\) là \(DE + DF + EF = 6 + 8 + 10 = 24\,cm.\)
Chú ý
Các em có thể suy ra chu vi tam giác \(DEF\) từ nhận xét: Hai tam giác bằng nhau thì chu vi bằng nhau.
Câu 17 :
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
Đáp án : C Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và định lý tổng ba góc trong tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta DEF\) nên \(\widehat A = \widehat D;\,\widehat B = \widehat E = 55^\circ ;\widehat C\, = \widehat F.\)
Xét tam giác \(ABC\) có \(\widehat A + \widehat B = 130^\circ \Rightarrow \widehat A = 130^\circ - \widehat B\)\( = 130^\circ - 55^\circ = 75^\circ \)
Lại có $\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)$\( = 180^\circ - 130^\circ = 50^\circ .\)
Vậy \(\widehat A = \widehat D = 75^\circ ;\,\widehat C\, = \widehat F = 50^\circ .\)
Câu 18 :
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
Đáp án : A Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và cách tìm hai số khi biết tổng và hiệu.
Lời giải chi tiết :
Vì \(\Delta DEF = \Delta MNP\) nên \(DE = MN = 3cm;\,EF = NP;\,DF = MP\) (hai cạnh tương ứng bằng nhau)
Mà theo bài ra ta có \(NP - MP = 2\,cm\) suy ra \(EF - FD = 2cm\). Lại có \(EF + FD = 10cm\) nên \(EF = \dfrac{{10 + 2}}{2} = 6\,cm;\,FD = 10 - 6 = 4\,cm.\)
Vậy \(FD = 4\,cm.\)
Câu 19 :
Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
Đáp án : D Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau. Chú ý đến thứ tự các đỉnh tương ứng của hai tam giác.
Lời giải chi tiết :
Vì \(\widehat A = \widehat O,\widehat B = \widehat K\) nên hai góc còn lại bằng nhau là \(\widehat C = \widehat H.\)
Suy ra \(\Delta ABC = \Delta OKH.\)
Câu 20 :
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
Đáp án : C Phương pháp giải :
Áp dụng định nghĩa hai tam giác bằng nhau và định lý về tổng ba góc trong một tam giác.
Lời giải chi tiết :
Vì \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M = 30^\circ ;\,\widehat C = \widehat P = 60^\circ ;\,\widehat B = \widehat N.\)
Xét tam giác \(MNP\) có \(\widehat M + \widehat N + \widehat P = 180^\circ \)\( \Rightarrow \widehat N = 180^\circ - \widehat M - \widehat P\)\( = 180^\circ - 30^\circ - 60^\circ = 90^\circ .\)
Vậy \(\widehat N > \widehat P > \widehat M.\)
Câu 21 :
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
Đáp án : C Phương pháp giải :
Dựa vào tính chất của hai tam giác bằng nhau.
Lời giải chi tiết :
![]()
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$
Câu 22
Phát biểu nào trong các phát biểu sau đây là đúng:
Đáp án : D Lời giải chi tiết :
![]() Câu 23
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
Đáp án : A Phương pháp giải :
Tính chất hai tam giác bằng nhau
Lời giải chi tiết :
Do \(\Delta ABD = \Delta KIH\) (theo câu trước), nên \(\widehat K = \widehat A = 60^\circ \) (hai góc tương ứng bằng nhau).
Câu 24 :
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
Đáp án : C Lời giải chi tiết :
![]()
Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\)
Câu 25
Chọn câu đúng.
Đáp án : D Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau theo trường hợp cạnh-cạnh-cạnh, sau đó suy ra hai góc tương ứng bằng nhau.
Lời giải chi tiết :
![]() Nên A, B, C sai, D đúng. Câu 26
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
Đáp án : C Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau. Từ đó suy ra được điều phải chứng minh.
Lời giải chi tiết :
Vì \(\Delta ACB = \Delta BC'A\,\)(ý trước) ta suy ra \(\widehat {CAB} = \widehat {C'BA}\) và \(\widehat {C'AB} = \widehat {CBA}\) (1) (hai góc tương ứng bằng nhau)
Lại có \(\widehat {CAB} = \widehat {CAC'} + \widehat {C'AB}\) và \(\widehat {C'AB} = \widehat {CBC'} + \widehat {CBA}\) (tia làm giữa hai tia)
Suy ra $\widehat {CAC'} = \widehat {CAB} - \widehat {C'AB}$ và \(\widehat {CBC'} = \widehat {C'BA} - \widehat {CBA}\) (2)
Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(\widehat {CAC'} = \widehat {CBC'}\).
|