ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số

Đề thi giữa kì 1 Toán 11 Cánh diều - Đề số 7

𝓰Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Phần trắc nghiệm

Đề bài

Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1 : Góc có số đo \(\frac{\pi }{6}\) radian bằng bao nhiêu độ?
  • A
    \({30^o}\)
  • B
    \({45^o}\)
  • C
    \({60^o}\)
  • D
    \({90^o}\)
Câu 2 : Cho \(\cos \alpha  =  - \frac{1}{4}\) với \(\pi  < \alpha  < \frac{{3\pi }}{2}\). Giá trị của \(\sin \alpha \) là?
  • A
    \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)
  • B
    \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\)
  • C
    \(\sin \alpha  = \frac{{15}}{{16}}\)
  • D
    \(\sin \alpha  =  - \frac{{15}}{{16}}\)
Câu 3 : Giá trị lượng giác \(\cos \left( {\frac{{37\pi }}{{12}}} \right)\) bằng?
  • A
    \(\frac{{\sqrt 6  + \sqrt 2 }}{4}\)
  • B
    \(\frac{{\sqrt 6  - \sqrt 2 }}{4}\)
  • C
    \( - \frac{{\sqrt 6  + \sqrt 2 }}{4}\)
  • D
    \( - \frac{{\sqrt 6  - \sqrt 2 }}{4}\)
Câu 4 : Hàm số nào sau đây là hàm số chẵn?
  • A
    \(y = \left| {\sin x} \right|\)
  • B
    \(y = {x^2}.\sin x\)
  • C
    \(y = \frac{x}{{\cos x}}\)
  • D
    \(y = x + \sin x\)
Câu 5 : Nghiệm của phương trình \(\cos x = 0\) là?
  • A
    \(x = k2\pi ,k \in \mathbb{Z}\)
  • B
    \(x = k\pi ,k \in \mathbb{Z}\)
  • C
    \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
  • D
    \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)
Câu 6 : Số hạng thứ 3 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = 2{u_{n - 1}} + 3}\end{array}} \right.\) là?
  • A
    5
  • B
    8
  • C
    28
  • D
    13
Câu 7 : Dãy số nào sau đây là cấp số cộng?
  • A
    1; 4; 8; 10
  • B
    2; 3; 5; 8; 9
  • C
    0; 2; 4; 6; 8
  • D
    1; 3; -5; -7; -9
Câu 8 : Cho dãy số có các số hạng đầu là \(0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};...\) Số hạng tổng quát của dãy số là:
  • A
    \({u_n} = \frac{{n + 1}}{n}\)
  • B
    \({u_n} = \frac{n}{{n + 1}}\)
  • C
    \({u_n} = \frac{{n - 1}}{n}\)
  • D
    \({u_n} = \frac{{{n^2} - n}}{{n + 1}}\)
Câu 9 : Các yếu tố nào sau đây xác định một mặt phẳng?
  • A
    Ba điểm phân biệt
  • B
    Một điểm và một đường thẳng
  • C
    Hai đường thẳng cắt nhau
  • D
    Bốn điểm phân biệt
Câu 10 : Trong các hình sau, hình nào có thể là hình biểu diễn một hình tứ diện?

  • A
    (I)
  • B
    (I), (II)
  • C
    (I), (II), (IV)
  • D
    (I), (II), (III), (IV)
Câu 11 : Số nghiệm của phương trình \(\sin 2x + \cos x = 0\) trên \([0;2\pi ]\) là
  • A
    3
  • B
    1
  • C
    2
  • D
    4
Câu 12 : Cho cấp số cộng \(({u_n})\) có \({u_5} =  - 10\) và \({u_{15}} = 60\). Tổng 20 số hạng đầu tiên của cấp số cộng là
  • A
    560
  • B
    480
  • C
    570
  • D
    475
Phần II: Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1 : Cho phương trình lượng giác \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0\). Khi đó

a) 𝓀Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

Đúng
Sai

b)ꦬ Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

Đúng
Sai

c) ♎Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

Đúng
Sai

d) 🐬Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

Đúng
Sai
Câu 2 : Cho \(\cos \alpha  =  - \frac{1}{4}\) và \(\pi  < \alpha  < \frac{{3\pi }}{2}\). Khi đó

a) \({\sin ^2}\alpha  = \frac{{15}}{{16}}\)

Đúng
Sai

b) \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)

Đúng
Sai

c) \(\tan \alpha  = \sqrt {15} \)

Đúng
Sai

d) ꧂\(\cot \alpha  =  - \frac{1}{{\sqrt {15} }}\)

Đúng
Sai
Câu 3 : Cho dãy số \(({u_n})\) biết \({u_n} = {2^n} + 1\). Khi đó

a)💯 Dãy số \(({u_n})\) là dãy số tăng

Đúng
Sai

b) ꦦDãy số \(({u_n})\) là dãy số bị chặn

Đúng
Sai

c) \({u_6} = 65\)

Đúng
Sai

d) ﷺSố hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

Đúng
Sai
Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Mặt phẳng (P) qua BD và song song với SA. Khi đó

a) 🧜Giao tuyến của hai mặt phẳng (SAB) và (SAD) là SO

Đúng
Sai

b) SO thuộc mặt phẳng (SBD)

Đúng
Sai

c) 🍬Gọi I là giao điểm của SC và (P). Khi đó OI//SA

Đúng
Sai

d)🍌 Thiết diện giữa (P) và hình chóp là hình bình hành

Đúng
Sai
Phần III: Câu trắc nghiệm trả lời ngắn.
Thí sinh trả lời từ câu 1 đến câu 6.
Câu 1 : Hằng ngày mực nước tại một cảng biển lên xuống theo thủy triều. Độ sâu h (m) của mực nước theo thời gian t (giờ) trong một ngày được cho bởi công thức \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) với \(0 \le t \le 24\). Tính thời điểm mực nước tại cảng cao nhất.
Đáp án:
Câu 2 : Phương trình \(2\sin 2x + 4\cos x = 0\) có bao nhiêu nghiệm trong khoảng (0;3000)?
Đáp án:
Câu 3 : Công ty cây xanh X trồng 496 cây hoa trong một khu vườn hình tam giác như sau: hàng thứ nhất trồng 1 cây hoa, kể từ hàng thứ hai trở đi số cây hoa trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi công ty cây xanh X trồng được bao nhiêu hàng cây trong khu vườn hình tam giác đó.
Đáp án:
Câu 4 : Cho dãy số \(({u_n})\) biết \({u_n} = n + \frac{1}{n}\). Tìm m để dãy số \(({u_n})\) bị chặn dưới bởi m.
Đáp án:
Câu 5 : Cho tứ diện ABCD. Điểm I và J theo thức tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GIJ) và (BCD) cắt BD tại E, cắt BC tại F. Tính tỉ số \(\frac{{IJ}}{{EF}}\) (Viết dưới dạng số thập phân)?
Đáp án:
Câu 6 : Cho hình chóp S.ABCD có đáy hình bình hành. Trên cạnh SA lấy điểm M sao cho MA = 2MS. Mặt phẳng (CDM) cắt SB tại N. Biết rằng AB = 3 cm, tính tổng MN + CD.

Đáp án:

Lời giải và đáp án

Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1 : Góc có số đo \(\frac{\pi }{6}\) radian bằng bao nhiêu độ?
  • A
    \({30^o}\)
  • B
    \({45^o}\)
  • C
    \({60^o}\)
  • D
    \({90^o}\)

Đáp án : A

Phương pháp giải :
Áp dụng quan hệ giữa radian và độ: \(1rad = {\left( {\frac{{180}}{\pi }} \right)^o}\), \({1^o} = \frac{\pi }{{180}}rad\).
Lời giải chi tiết :
Ta có: \(\frac{\pi }{6}rad = \frac{\pi }{6}.\frac{{{{180}^o}}}{\pi } = {30^o}\).
Câu 2 : Cho \(\cos \alpha  =  - \frac{1}{4}\) với \(\pi  < \alpha  < \frac{{3\pi }}{2}\). Giá trị của \(\sin \alpha \) là?
  • A
    \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)
  • B
    \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\)
  • C
    \(\sin \alpha  = \frac{{15}}{{16}}\)
  • D
    \(\sin \alpha  =  - \frac{{15}}{{16}}\)

Đáp án : B

Phương pháp giải :
Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và sử dụng đường tròn lượng giác để xét dấu.
Lời giải chi tiết :
Ta có: \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = 1 - {\left( {\frac{1}{4}} \right)^2} = \frac{{15}}{{16}}\), suy ra \(\sin \alpha  =  \pm \frac{{\sqrt {15} }}{4}\). Vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\) nên điểm cuối của cung \(\alpha \) thuộc cung phần tư thứ III, do đó \(\sin \alpha  < 0\). Vậy \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\).
Câu 3 : Giá trị lượng giác \(\cos \left( {\frac{{37\pi }}{{12}}} \right)\) bằng?
  • A
    \(\frac{{\sqrt 6  + \sqrt 2 }}{4}\)
  • B
    \(\frac{{\sqrt 6  - \sqrt 2 }}{4}\)
  • C
    \( - \frac{{\sqrt 6  + \sqrt 2 }}{4}\)
  • D
    \( - \frac{{\sqrt 6  - \sqrt 2 }}{4}\)

Đáp án : C

Phương pháp giải :
Sử dụng công thức cộng lượng giác \(\cos (a - b) = \cos a.\cos b + \sin b.\sin a\).
Lời giải chi tiết :
\(\cos \frac{{37\pi }}{{12}} = \cos \left( {3\pi  + \frac{\pi }{{12}}} \right) = \cos \left( {\pi  + \frac{\pi }{{12}}} \right) =  - \cos \frac{\pi }{{12}} =  - \cos \left( {\frac{\pi }{3} - \frac{\pi }{4}} \right)\) \( =  - \left( {\cos \frac{\pi }{3}.\cos \frac{\pi }{4} + \sin \frac{\pi }{3}.\sin \frac{\pi }{4}} \right) =  - \frac{{\sqrt 6  + \sqrt 2 }}{4}\).
Câu 4 : Hàm số nào sau đây là hàm số chẵn?
  • A
    \(y = \left| {\sin x} \right|\)
  • B
    \(y = {x^2}.\sin x\)
  • C
    \(y = \frac{x}{{\cos x}}\)
  • D
    \(y = x + \sin x\)

Đáp án : A

Phương pháp giải :
Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\). - Nếu f(x) = f(-x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định. - Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.
Lời giải chi tiết :
Xét phương án A, hàm số \(y = \left| {\sin x} \right|\) có tập xác định D = R, suy ra có \(x \in R\) thì \( - x \in R\). Mặt khác, \(f( - x) = \left| {\sin ( - x)} \right| = \left| { - \sin x} \right| = \sin x = f(x)\). Vậy hàm số đáp án A là hàm số chẵn.
Câu 5 : Nghiệm của phương trình \(\cos x = 0\) là?
  • A
    \(x = k2\pi ,k \in \mathbb{Z}\)
  • B
    \(x = k\pi ,k \in \mathbb{Z}\)
  • C
    \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)
  • D
    \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\)

Đáp án : C

Phương pháp giải :
Nghiệm của phương trình lượng giác cơ bản.
Lời giải chi tiết :
\(\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).
Câu 6 : Số hạng thứ 3 của dãy số \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_n} = 2{u_{n - 1}} + 3}\end{array}} \right.\) là?
  • A
    5
  • B
    8
  • C
    28
  • D
    13

Đáp án : D

Phương pháp giải :
Tìm lần lượt \({u_2},{u_3}\) bằng cách thay n vào công thức tổng quát.
Lời giải chi tiết :
Ta có: \({u_2} = 2{u_{2 - 1}} + 3 = 2{u_1} + 3 = 2.1 + 3 = 5\) \({u_3} = 2{u_{3 - 1}} + 3 = 2{u_2} + 3 = 2.5 + 3 = 13\)
Câu 7 : Dãy số nào sau đây là cấp số cộng?
  • A
    1; 4; 8; 10
  • B
    2; 3; 5; 8; 9
  • C
    0; 2; 4; 6; 8
  • D
    1; 3; -5; -7; -9

Đáp án : C

Phương pháp giải :
Dãy số lập thành một cấp số cộng khi và chỉ khi hai phần tử liên tiếp sai khác nhau một hằng số.
Lời giải chi tiết :
Xét hiệu các phần tử liên tiếp trong các dãy số, chỉ có dãy ở đáp án C phần tử sau hơn phần tử liền trước 2 đơn vị (8 – 6 = 6 – 4 = 4 – 2 = 2 – 0 = 2).
Câu 8 : Cho dãy số có các số hạng đầu là \(0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};...\) Số hạng tổng quát của dãy số là:
  • A
    \({u_n} = \frac{{n + 1}}{n}\)
  • B
    \({u_n} = \frac{n}{{n + 1}}\)
  • C
    \({u_n} = \frac{{n - 1}}{n}\)
  • D
    \({u_n} = \frac{{{n^2} - n}}{{n + 1}}\)

Đáp án : B

Phương pháp giải :
Viết các số hạng đầu của từng đáp án để kiểm tra.
Lời giải chi tiết :
Ta có: \(0 = \frac{0}{{0 + 1}}\); \(\frac{1}{2} = \frac{1}{{1 + 1}}\); \(\frac{2}{3} = \frac{1}{{2 + 1}}\); \(\frac{3}{4} = \frac{3}{{3 + 1}}\); \(\frac{4}{5} = \frac{4}{{4 + 1}}\). Vậy \({u_n} = \frac{n}{{n + 1}}\).
Câu 9 : Các yếu tố nào sau đây xác định một mặt phẳng?
  • A
    Ba điểm phân biệt
  • B
    Một điểm và một đường thẳng
  • C
    Hai đường thẳng cắt nhau
  • D
    Bốn điểm phân biệt

Đáp án : C

Phương pháp giải :
Dựa vào lý thuyết các xác định một mặt phẳng.
Lời giải chi tiết :
Một mặt phẳng được xác định nếu nó đi qua: - Ba điểm không thẳng hàng - Một điểm và một đường thẳng không đi qua điểm đó. - Hai đường thẳng cắt nhau.
Câu 10 : Trong các hình sau, hình nào có thể là hình biểu diễn một hình tứ diện?

  • A
    (I)
  • B
    (I), (II)
  • C
    (I), (II), (IV)
  • D
    (I), (II), (III), (IV)

Đáp án : D

Phương pháp giải :
Tứ diện là hình có 4 mặt và 4 đỉnh.
Lời giải chi tiết :
Cả 4 hình đều là tứ diện (4 mặt và 4 đỉnh). Hình (I) và (III) có thể nhìn thấy 2 mặt. Hình (II) có thể nhìn thấy 1 mặt. Hình (IV) có thể nhìn thấy 3 mặt.
Câu 11 : Số nghiệm của phương trình \(\sin 2x + \cos x = 0\) trên \([0;2\pi ]\) là
  • A
    3
  • B
    1
  • C
    2
  • D
    4

Đáp án : D

Phương pháp giải :
Biến đổi phương trình trở thành dạng phương trình tích, đưa về giải phương trình lượng giác cơ bản.
Lời giải chi tiết :
\(\sin 2x + \cos x = 0 \Leftrightarrow 2\sin x.\cos x + \cos x = 0 \Leftrightarrow \cos x.(2\sin x + 1) = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{2\sin x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\sin x =  - \frac{1}{2}}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x =  - \frac{\pi }{6} + k2\pi }\\{x = \frac{{7\pi }}{6} + k2\pi }\end{array}} \right.} \right.\) với \(k \in \mathbb{Z}\). Vì \(x \in [0;2\pi ]\) nên chỉ có 4 nghiệm thỏa mãn: \(x = \left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\frac{{7\pi }}{6};\frac{{11\pi }}{6}} \right\}\).
Câu 12 : Cho cấp số cộng \(({u_n})\) có \({u_5} =  - 10\) và \({u_{15}} = 60\). Tổng 20 số hạng đầu tiên của cấp số cộng là
  • A
    560
  • B
    480
  • C
    570
  • D
    475

Đáp án : C

Phương pháp giải :
Tìm số hạng đầu và công sai dựa theo công thức \({u_n} = {u_1} + (n - 1)d\). Từ đó tìm tổng 20 số hạng đầu tiên \({S_n} = \frac{{({u_1} + {u_n})n}}{2}\).
Lời giải chi tiết :
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{{u_5} = {u_1} + 4d}\\{{u_{15}} = {u_1} + 14d}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 10 = {u_1} + 4d}\\{60 = {u_1} + 14d}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1} =  - 38}\\{d = 7}\end{array}} \right.\) Từ đó ta tính được \({u_{20}} =  - 38 + (20 - 1)7 = 95\). Vậy tổng 20 số hạng đầu của cấp số cộng là \({S_{20}} = \frac{{({u_1} + {u_{20}}).20}}{2} = \frac{{( - 38 + 95).20}}{2} = 570\).
Phần II: Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1 : Cho phương trình lượng giác \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0\). Khi đó

a) ﷽Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

Đúng
Sai

b)🎶 Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

Đúng
Sai

c) ꦗPhương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

Đúng
Sai

d) ♏Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

Đúng
Sai
Đáp án

a) 🧔Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \frac{\pi }{3}\)

Đúng
Sai

b)𒁃 Phương trình có nghiệm là \(x = \frac{\pi }{4} + k2\pi \); \(x = \frac{{7\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\)

Đúng
Sai

c) 🥃Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

Đúng
Sai

d) 🅷Số nghiệm của phương trình trong khoảng \(( - \pi ;\pi )\) là hai nghiệm

Đúng
Sai
Phương pháp giải :
Giải phương trình lượng giác \(\sin x = a\): - Nếu \(\left| a \right| > 1\) thì phương trình vô nghiệm. - Nếu \(\left| a \right| \le 1\) thì chọn cung \(\alpha \) sao cho \(\sin \alpha  = a\). Khi đó phương trình trở thành: \(\sin x = \sin \alpha  \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \alpha  + k2\pi }\\{x = \pi  - \alpha  + k2\pi }\end{array}} \right.\) với \(k \in \mathbb{Z}\).
Lời giải chi tiết :
\(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - \frac{\pi }{{12}} =  - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi  + \frac{\pi }{3} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}} \right.\)

a) Sai. \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

b) Sai. Phương trình có nghiệm là \(x =  - \frac{\pi }{4} + k2\pi \); \(x = \frac{{17\pi }}{{12}} + k2\pi \) \((k \in \mathbb{Z})\).

c) Đúng.

+ Xét họ nghiệm \(x =  - \frac{\pi }{4} + k2\pi \): Nghiệm âm lớn nhất là \(x =  - \frac{\pi }{4}\) khi k = 0. + Xét họ nghiệm \(x = \frac{{17\pi }}{{12}} + k2\pi \): Nghiệm âm lớn nhất là \(x =  - \frac{{7\pi }}{{12}}\) khi k = -1. Vì \( - \frac{\pi }{4} >  - \frac{{7\pi }}{{12}}\) nên nghiệm âm lớn nhất là \(x =  - \frac{\pi }{4}\).

d) Đúng.

+ Xét họ nghiệm \(x =  - \frac{\pi }{4} + k2\pi \): \( - \pi  < x < \pi  \Leftrightarrow  - \pi  <  - \frac{\pi }{4} + k2\pi  < \pi \) \( \Leftrightarrow  - 1 <  - \frac{1}{4} + 2k < 1 \Leftrightarrow  - \frac{3}{4} < 2k < \frac{5}{4} \Leftrightarrow  - \frac{3}{8} < k < \frac{5}{8}\). Vậy chỉ có k = 0 thỏa mãn. Khi đó \(x =  - \frac{\pi }{4}\). + Xét họ nghiệm \(x = \frac{{17\pi }}{{12}} + k2\pi \): \( - \pi  < x < \pi  \Leftrightarrow  - \pi  < \frac{{17\pi }}{{12}} + k2\pi  < \pi  \Leftrightarrow  - 1 < \frac{{17}}{{12}} + 2k < 1\) \( \Leftrightarrow  - \frac{{29}}{{12}} < 2k <  - \frac{5}{{12}} \Leftrightarrow  - \frac{{29}}{{24}} < k <  - \frac{5}{{24}}\). Vậy chỉ có k = -1 thỏa mãn. Khi đó \(x =  - \frac{{7\pi }}{{12}}\). Vậy phương trình có hai nghiệm thuộc khoảng \(( - \pi ;\pi )\) là \(x =  - \frac{\pi }{4}\) và \(x =  - \frac{{7\pi }}{{12}}\).
Câu 2 : Cho \(\cos \alpha  =  - \frac{1}{4}\) và \(\pi  < \alpha  < \frac{{3\pi }}{2}\). Khi đó

a) \({\sin ^2}\alpha  = \frac{{15}}{{16}}\)

Đúng
Sai

b) \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)

Đúng
Sai

c) \(\tan \alpha  = \sqrt {15} \)

Đúng
Sai

d) 🥀\(\cot \alpha  =  - \frac{1}{{\sqrt {15} }}\)

Đúng
Sai
Đáp án

a) \({\sin ^2}\alpha  = \frac{{15}}{{16}}\)

Đúng
Sai

b) \(\sin \alpha  = \frac{{\sqrt {15} }}{4}\)

Đúng
Sai

c) \(\tan \alpha  = \sqrt {15} \)

Đúng
Sai

d) ꧋\(\cot \alpha  =  - \frac{1}{{\sqrt {15} }}\)

Đúng
Sai
Phương pháp giải :
a) Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu. b) Áp dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và dựa vào góc phần tư của đường tròn lượng giác để xét dấu. c) \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{\cot \alpha }}\) d) \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\tan \alpha }}\)
Lời giải chi tiết :
\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( { - \frac{1}{4}} \right)^2} = \frac{{15}}{{16}} \Rightarrow \sin \alpha  =  \pm \frac{{\sqrt {15} }}{4}\). Vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\) nên điểm cuối của cung \(\alpha \) thuộc góc phần tư thứ III nên \(\sin \alpha  < 0\). Vậy \(\sin \alpha  =  - \frac{{\sqrt {15} }}{4}\). \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \frac{1}{4}}}{{ - \frac{{\sqrt {15} }}{4}}} = \sqrt {15} \); \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt {15} }}\).

a) Đúng.

b) Sai.

c) Đúng.

d) Sai.

Câu 3 : Cho dãy số \(({u_n})\) biết \({u_n} = {2^n} + 1\). Khi đó

a)💮 Dãy số \(({u_n})\) là dãy số tăng

Đúng
Sai

b) 👍Dãy số \(({u_n})\) là dãy số bị chặn

Đúng
Sai

c) \({u_6} = 65\)

Đúng
Sai

d) ▨Số hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

Đúng
Sai
Đáp án

a)🥀 Dãy số \(({u_n})\) là dãy số tăng

Đúng
Sai

b) 𓂃Dãy số \(({u_n})\) là dãy số bị chặn

Đúng
Sai

c) \({u_6} = 65\)

Đúng
Sai

d) ♓Số hạng thứ n + 2 của dãy số là \({u_{n + 2}} = {2^n}.2\)

Đúng
Sai
Phương pháp giải :
a) Dãy số \(({u_n})\) là dãy số giảm nếu \({u_n} > {u_{n + 1}}\). Dãy số \(({u_n})\) là dãy số tăng nếu \({u_n} < {u_{n + 1}}\). b) Dãy số \(({u_n})\) là dãy số bị chặn nếu \(({u_n})\) vừa bị chặn trên vừa bị chặn dưới, tức tồn tại hai số m, M sao cho \(m \le {u_n} \le M\) \(\forall n \in \mathbb{N}*\). c) Tính \({u_6}\) bằng công thức \({u_n} = {2^n} + 1\). d) Thay n + 2 vào n trong công thức số hạng tổng quát \({u_n} = {2^n} + 1\).
Lời giải chi tiết :

a) Đúng. \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - ({2^n} + 1) = {2^{n + 1}} - {2^n} = {2^n}(2 - 1) = {2^n} > 0\) với mọi n. Vậy dãy số là dãy tăng.

b) Sai. Dãy không bị chặn trên vì không có giá trị M nào để \({2^n} < M\) với mọi n. Vậy dãy số không bị chặn.

c) Đúng. \({u_6} = {2^6} + 1 = 64 + 1 = 65\).

d) Sai. \({u_{n + 2}} = {2^{n + 2}} + 1 = {4.2^n} + 1\).

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Mặt phẳng (P) qua BD và song song với SA. Khi đó

a) 🦄Giao tuyến của hai mặt phẳng (SAB) và (SAD) là SO

Đúng
Sai

b) SO thuộc mặt phẳng (SBD)

Đúng
Sai

c) ꧟Gọi I là giao điểm của SC và (P). Khi đó OI//SA

Đúng
Sai

d)༒ Thiết diện giữa (P) và hình chóp là hình bình hành

Đúng
Sai
Đáp án

a) 💮Giao tuyến của hai mặt phẳng (SAB) và (SAD) là SO

Đúng
Sai

b) SO thuộc mặt phẳng (SBD)

Đúng
Sai

c) 🍨Gọi I là giao điểm của SC và (P). Khi đó OI//SA

Đúng
Sai

d)🔜 Thiết diện giữa (P) và hình chóp là hình bình hành

Đúng
Sai
Phương pháp giải :
Sử dụng các định lý về đường thẳng song song với mặt phẳng, cách tìm giao tuyến, thiết diện của hai mặt phẳng.
Lời giải chi tiết :

a) Sai. ꦬGiao tuyến của hai mặt phẳng (SAB) và (SAD) là SA.

b) Đúng.ꦡ SO thuộc mặt phẳng (SBD) vì cả \(S \in (SBD)\), \(O \in BD \subset (SBD)\).

c) Đúng.💦 Có \(OI \subset (P)\) mà SA//(P) nên SA không cắt đường thẳng nào trong (P), tức OI//SA (do OI, SA cùng thuộc mặt phẳng (SAC)).

d) Sai. Thiết diện là tam giác BID.

Phần III: Câu trắc nghiệm trả lời ngắn.
Thí sinh trả lời từ câu 1 đến câu 6.
Câu 1 : Hằng ngày mực nước tại một cảng biển lên xuống theo thủy triều. Độ sâu h (m) của mực nước theo thời gian t (giờ) trong một ngày được cho bởi công thức \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) với \(0 \le t \le 24\). Tính thời điểm mực nước tại cảng cao nhất.
Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
Tìm t sao cho hàm số \(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) đạt giá trị lớn nhất.
Lời giải chi tiết :
\(h = 11 + 2\sin \left( {\frac{\pi }{{12}}t} \right)\) đạt giá trị lớn nhất khi \(\sin \left( {\frac{\pi }{{12}}t} \right) = 1 \Leftrightarrow \frac{\pi }{{12}}t = \frac{\pi }{2} + k2\pi  \Leftrightarrow t = 6 + 24k\) (giờ). Vì \(0 \le t \le 24\) nên chỉ có giá trị t = 6 thỏa mãn. Vậy thời điểm mực nước tại cảng cao nhất là lúc 6 giờ.
Câu 2 : Phương trình \(2\sin 2x + 4\cos x = 0\) có bao nhiêu nghiệm trong khoảng (0;3000)?
Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
Giải phương trình lượng giác bằng cách biến đổi về dạng phương trình tích. Xét họ nghiệm trong khoảng (0;3000) để tìm số giá trị k nguyên thỏa mãn.
Lời giải chi tiết :
Ta có: \(2\sin 2x + 4\cos x = 0 \Rightarrow 4\sin x.\cos x + 4\cos x = 0 \Rightarrow 4\cos x.(\sin x + 1) = 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos x = 0}\\{\sin x =  - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \frac{{3\pi }}{2} + k2\pi }\end{array}} \right. \Leftrightarrow x = \frac{\pi }{2} + k\pi \) với \(k \in \mathbb{Z}\). Xét họ nghiệm \(x = \frac{\pi }{2} + k\pi \), ta có: \(0 < \frac{\pi }{2} + k\pi  < 3000 \Leftrightarrow  - \frac{\pi }{2} < k\pi  < 3000 - \frac{\pi }{2} \Leftrightarrow  - \frac{1}{2} < k < \frac{{3000}}{\pi } - \frac{1}{2} \Leftrightarrow  - 0,5 < k < 954,43\). Mà \(k \in \mathbb{Z}\) nên \(k \in \{ 0;1;2;3;...;954\} \), tức có 955 giá trị k thỏa mãn. Vậy phương trình có 955 nghiệm thuộc khoảng (0;3000).
Câu 3 : Công ty cây xanh X trồng 496 cây hoa trong một khu vườn hình tam giác như sau: hàng thứ nhất trồng 1 cây hoa, kể từ hàng thứ hai trở đi số cây hoa trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi công ty cây xanh X trồng được bao nhiêu hàng cây trong khu vườn hình tam giác đó.
Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
Số cây mỗi hàng lập thành một cấp số cộng với tổng n số hạng là 496, số hạng đầu \({u_1} = 1\) công sai d = 1. Tìm n.
Lời giải chi tiết :
Số cây mỗi hàng lập thành một cấp số cộng với tổng n số hạng là 496, số hạng đầu \({u_1} = 1\) công sai d = 1. Ta có: \(496 = \frac{{2.1 + (n - 1).1}}{2}.n \Leftrightarrow 992 = (2 + n - 1).n = {n^2} + n - 992 = 0\). Ta tính được n = 31 hoặc n = -32 (loại). Vậy số hàng cây trồng được là 31 hàng.
Câu 4 : Cho dãy số \(({u_n})\) biết \({u_n} = n + \frac{1}{n}\). Tìm m để dãy số \(({u_n})\) bị chặn dưới bởi m.
Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
Chứng minh dãy số tăng và bị chặn dưới tại \(m = {u_1}\).
Lời giải chi tiết :
Xét \({u_{n + 1}} - {u_n} = \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right) = 1 + \frac{1}{{n + 1}} - \frac{1}{n} = \left( {1 - \frac{1}{n}} \right) + \frac{1}{{n + 1}}\). Ta có: \(n \ge 1 \Leftrightarrow \frac{1}{n} < 1 \Leftrightarrow 1 - \frac{1}{n} > 0\); \(n \ge 1 \Rightarrow \frac{1}{{n + 1}} > 0\). Vậy \({u_{n + 1}} - {u_n} > 0\), tức dãy số tăng. Khi đó, dãy bị chặn dưới bởi \({u_1} = 1 + \frac{1}{1} = 2 = m\).
Câu 5 : Cho tứ diện ABCD. Điểm I và J theo thức tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GIJ) và (BCD) cắt BD tại E, cắt BC tại F. Tính tỉ số \(\frac{{IJ}}{{EF}}\) (Viết dưới dạng số thập phân)?
Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
Sử dụng định lý giao tuyến của ba mặt phẳng, định lý Thales.
Lời giải chi tiết :

Xét \(\Delta ACD\) có IJ//CD suy ra \(\frac{{AI}}{{AD}} = \frac{{AJ}}{{AC}} = \frac{1}{2}\) (I và J theo thức tự là trung điểm của AD và AC). Từ đó dễ dàng chứng minh \(\Delta AIJ\)ᔕ \(\Delta ADC\), suy ra \(\frac{{IJ}}{{CD}} = \frac{1}{2}\), tức \(IJ = \frac{1}{2}CD\)   (1) Ta có: \(\left\{ {\begin{array}{*{20}{c}}{CD = (ACD) \cap (BCD)}\\{IJ = (ACD) \cap (IJG)}\\{EF = (IJG) \cap (BCD)}\\{IJ/CD}\end{array}} \right.\). Theo định lý về giao tuyến của ba mặt phẳng, ta được: EF//CD//IJ. Vì \(\left\{ {\begin{array}{*{20}{c}}{EF = (IJG) \cap (BCD)}\\\begin{array}{l}G \in (IJG)\\G \in (BCD)\end{array}\end{array}} \right.\) nên E, G, F thẳng hàng. Xét \(\Delta BCM\) có FG//CM (vì EF//CD) suy ra \(\frac{{BF}}{{BC}} = \frac{{BG}}{{BM}} = \frac{2}{3}\) (vì G là trọng tâm \(\Delta BCD\)). Xét \(\Delta BCD\) có EF//CD suy ra \(\frac{{BF}}{{BC}} = \frac{{BE}}{{BD}} = \frac{2}{3}\). Từ đó dễ dàng chứng minh \(\Delta BEF\)ᔕ\(\Delta BDC\), suy ra \(\frac{{EF}}{{CD}} = \frac{2}{3}\), tức \(EF = \frac{2}{3}CD\)   (2) Từ (1) và (2) suy ra \(\frac{{IJ}}{{EF}} = \frac{{\frac{1}{2}CD}}{{\frac{2}{3}CD}} = \frac{3}{4} = 0,75\).
Câu 6 : Cho hình chóp S.ABCD có đáy hình bình hành. Trên cạnh SA lấy điểm M sao cho MA = 2MS. Mặt phẳng (CDM) cắt SB tại N. Biết rằng AB = 3 cm, tính tổng MN + CD.

Đáp án:
Đáp án
Đáp án:
Phương pháp giải :
- Định lý Thales. - Quy tắc tìm giao tuyến của hai mặt phẳng chứa hai đường thẳng song song.
Lời giải chi tiết :

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in (CDM)}\\\begin{array}{l}M \in AB \subset (SAB)\\AB//CD\\AB \subset (SAB),CD \subset (CDM)\end{array}\end{array}} \right.\) nên giao tuyến của (CDM) và (SAB) là đường thẳng d song song với AB, CD và đi qua M. Giả sử d cắt SA tại N thì đường thẳng MN là giao tuyến của (CDM), (SAB) và MN//AB, suy ra \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3}\). Từ đó, dễ dàng chứng minh \(\Delta SMN\)ᔕ\(\Delta SAB\), suy ra \(\frac{{MN}}{{AB}} = \frac{1}{3}\), tức \(MN = \frac{1}{3}AB = \frac{1}{3}.3 = 1\) (cm). Vì ABCD là hình bình hành nên AB = CD = 3 (cm). Vậy MN + CD = 1 + 3 = 4 (cm).
close
🍌{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số fan 25}|🦄{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số ap}|🌸{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số co}|{đa ga thomo truc tiep hom nay}|🌼{ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số83_ae888 201_ae888 city 231_ae888 vnd.com_ae888 cam83_ae888 số nthusa}|