Giải bài 12 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2Cho tam giác nhọn ABC và điểm D nằm giữa B và C. Gọi E và F lần lượt là chân đường vuông góc hạ từ D xuống AB và AC. a) Gọi I và J lần lượt là tâm đường tròn ngoại tiếp tam giác EBD và tam giác FDC. Chứng minh rằng hai đường tròn (I) và (J) tiếp xúc ngoài với nhau. b) Giả sử M là một điểm tùy ý khác F, nằm giữa A và C; gọi K là tâm đường tròn ngoại tiếp tam giác MDC. Chứng minh rằng hai đường tròn (I) và (K) cắt nhau.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho tam giác nhọn ABC và điểm D nằm giữa B và C. Gọi E và F lần lượt là chân đường vuông góc hạ từ D xuống AB và AC. a) Gọi I và J lần lượt là tâm đường tròn ngoại tiếp tam giác EBD và tam giác FDC. Chứng minh rằng hai đường tròn (I) và (J) tiếp xúc ngoài với nhau. b) Giả sử M là một điểm tùy ý khác F, nằm giữa A và C; gọi K là tâm đường tròn ngoại tiếp tam giác MDC. Chứng minh rằng hai đường tròn (I) và (K) cắt nhau.Phương pháp giải - Xem chi tiết
a) Chứng minh 3 điểm I, D, J thẳng hàng và \(IJ = ID + DJ\) suy ra hai đường tròn (I) và (J) tiếp xúc ngoài với nhau tại D.
b) + Do (K) và (I) có điểm chung là D nên chúng chỉ có thể cắt nhau hoặc tiếp xúc nhau.
+ Chứng minh (K) tiếp xúc với (I) là vô lí. Suy ra (K) và (I) là hai đường tròn cắt nhau.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |