Giải bài tập 3.38 trang 65 SGK Toán 9 tập 1 - Kết nối tri thứcCho biểu thức (A = frac{{sqrt x + 2}}{{sqrt x - 2}} - frac{4}{{sqrt x + 2}}left( {x ge 0,x ne 4} right).) a) Rút gọn biểu thức A. b) Tính giá trị của A tại (x = 14.)
Toán - Văn - Anh
Quảng cáo
Đề bài Cho biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{4}{{\sqrt x + 2}}\left( {x \ge 0,x \ne 4} \right).\) a) Rút gọn biểu thức A. b) Tính giá trị của A tại \(x = 14.\)Video hướng dẫn giải Phương pháp giải - Xem chi tiết ꦓĐể rút gọn biểu thức ta cần quy đồng, mẫu số chung rồi rút gọn như đối với phân thức. ౠKhi tính giá trị của biểu thức thì ta thay giá trị x cần tính vào biểu thức cần tính, cần kiểm tra điều kiện trước khi thay. Lời giải chi tiết a) \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{4}{{\sqrt x + 2}}\left( {x \ge 0,x \ne 4} \right)\) \(\begin{array}{l}A = \frac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \frac{{4\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\ = \frac{{x + 4\sqrt x + 4 - 4\sqrt x + 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\ = \frac{{x + 12}}{x-4}\end{array}\) b) Với \(x = 14\left( {t/m} \right)\) ta có \(A = \frac{{14 + 12}}{14-4} = \frac{{26 }}{{10}} = \frac{13 }{5}.\) Vậy \(x = 14\) thì \(A = \frac{{13}}{5}.\)
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |