Giải bài tập 4 trang 127 SGK Toán 9 tập 2 - Kết nối tri thứcGiải các phương trình sau: a) (frac{2}{{x + 1}} - frac{{2x}}{{{x^2} - x + 1}} = frac{3}{{{x^3} + 1}}); b) (frac{{x + 1}}{{2x - 1}} - frac{2}{{2x + 1}} = frac{{2{x^2}}}{{4{x^2} - 1}}).
Toán - Văn - Anh
Quảng cáo
Đề bài Giải các phương trình sau: a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\); b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).Video hướng dẫn giải Phương pháp giải - Xem chi tiết
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình. Bước 2.🏅 Quy đồng mẫu hai vế của phương trình rồi khử mẫu. Bước 3. Giải phương trình vừa tìm được. Bước 4 (Kết luận).ꦇ Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho. Lời giải chi tiết a) Điều kiện xác định \(x \ne - 1\). Quy đồng và khử mẫu ta được: \(\frac{{2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\), suy ra: \(2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right) = 3\) (1) Giải phương trình (1): \(2\left( {{x^2} - x + 1} \right) - 2x\left( {x + 1} \right) = 3\) \(2{x^2} - 2x + 2 - 2{x^2} - 2x = 3\) \( - 4x + 2 = 3\) \( - 4x = 1\) \(x = - \frac{1}{4}\) (thỏa mãn điều kiện) Vậy phương trình có nghiệm \(x = - \frac{1}{4}\). b) Điều kiện xác định: \(x \ne \frac{1}{2}\) và \(x \ne - \frac{1}{2}\). Quy đồng và khử mẫu ta được: \(\frac{{\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right)}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}} = \frac{{2{x^2}}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\), Suy ra: \(\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right) = 2{x^2}\) (1) Giải phương trình (1): \(\left( {x + 1} \right)\left( {2x + 1} \right) - 2\left( {2x - 1} \right) = 2{x^2}\) \(2{x^2} + 3x + 1 - 4x + 2 = 2{x^2}\) \(2{x^2} - 2{x^2} + 3x - 4x = - 1 - 2\) \( - x = - 3\) \(x = 3\) (thỏa mãn điều kiện)Vậy phương trình có nghiệm \(x = 3\).
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |