Giải bài tập 9.27 trang 89 SGK Toán 9 tập 2 - Kết nối tri thứcCho hình thoi ABCD có (widehat A = {60^o}). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.
Toán - Văn - Anh
Quảng cáo
Đề bài Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.Video hướng dẫn giải Phương pháp giải - Xem chi tiết
+ Chứng minh tam giác ABD đều nên \(BD = AB = AD\).
+ Chứng minh \(MB = BN = PD = DQ = MQ = NP = \frac{{AB}}{2}\).
+ Chứng minh \(\widehat B = \widehat {BNP} = \widehat {NPD} = \widehat D = \widehat {DQM} = \widehat {QMB} = {120^o}\)
+ Suy ra MBNPDQ là lục giác đều.
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |