Trắc nghiệm Bài 8: Trường hợp đồng dạng thứ ba của tam giác Toán 8 Cánh diềuĐề bài
Câu 1 :
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Câu 2 :
Cho tam giác \(ABC\) cân tại \(A\) , đường cao \(CE\) . Tính \(AB\) , biết \(BC = 24\) cm và \(BE = 9\) cm.
Câu 3 :
Cho hình vẽ:
Câu 4 :
Cho hình vẽ:
Câu 5 :
Cho tam giác ABC cân tại A, \(AC = 20cm,BC = 24cm.\) Các đường cao AD và CE cắt nhau tại H. Khi đó,
Câu 6 :
Cho tam giác ABC vuông tại A, đường cao AH chia đoạn BC thành hai đoạn thẳng \(HB = 7cm,HC = 18cm.\) Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau. Khi đó,
Câu 7 :
Cho hình bình hành ABCD \(\left( {AC > AB} \right)\) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD và H là hình chiếu của B trên AC.Chọn đáp án đúng.
Câu 8 :
Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Khi đó:
Câu 9 :
Cho tam giác ABC cân tại A, đường cao CE. Biết rằng \(BE = 3cm,BC = 8cm.\) Độ dài đoạn thẳng AB là:
Câu 10 :
Cho tam giác ABC vuông tại A có \(\widehat B = {30^0}\), tam giác MNP vuông tại M có \(\widehat N = {60^{0.}}\)Chọn đáp án đúng.
Câu 11 :
Cho hình vẽ:
Câu 12 :
Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho \(AM = 2m,AM \bot AB\) và đo được góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có \(A'M' = 1cm,\;\widehat {A'M'B'} = \widehat {AMB}\) và đo được \(A'B' = 5cm\) (hình vẽ dưới). Khoảng cách từ A đến B bằng:
Câu 13 :
Cho hình vẽ:
Câu 14 :
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Câu 15 :
Cho các mệnh đề sau. Chọn câu đúng. (I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Câu 16 :
Cho hình vẽ:
Câu 17 :
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\widehat B = \widehat F\)Chọn đáp án đúng
Câu 18 :
Nếu \(\Delta MNP\) và \(\Delta DEF\) có ♛\(\widehat{M}=\widehat{D}=90{}^\circ \) , \(\widehat{P}=50{}^\circ \) . Để \(\Delta MNP\,\backsim \,\Delta DEF\) thì cần thêm điều kiện
Câu 19 :
Nếu \(\Delta DEF\) và \(\Delta SRK\) có \(\widehat{D}=70{}^\circ \) ; \(\widehat{E}=60{}^\circ \) ; \(\widehat{S}=70{}^\circ \) ; \(\widehat{K}=50{}^\circ \) thì
Câu 21 :
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Hệ thức nào sau đây đúng?
Câu 22 :
Cho hình thang \(ABCD\) \(\left( {AB\,{\rm{//}}\,CD} \right)\), \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\). Khẳng định nào sau đây đúng
Câu 23 :
Cho hình thang \(ABCD\,\,\left( {AB\,{\rm{//}}\,CD} \right)\), \(\widehat {ADB} = \widehat {BCD}\), \(AB = 2\,{\rm{cm}}\), \(BD = \sqrt 5 \,{\rm{cm}}\). Độ dài đoạn thẳng \(CD\) là
Câu 24 :
Cho hình thang vuông \(ABCD\),🔜 \(\left( {\widehat A = \widehat D = 90^\circ } \right)\) có \(DB \bot BC\), \(AB = 4\,{\rm{cm}}\), \(CD = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là
Câu 25 :
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\) biết \(BH = 4\,{\rm{cm}}\), \(CH = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(AH\) là
Câu 26 :
Cho hình vẽ, biết \(\widehat {ACB} = \widehat {ABD}\), \(AB = 3\,{\rm{cm}}\), \(AC = 4,5\,{\rm{cm}}\). Độ dài đoạn thẳng \(AD\) là
Câu 27 :
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 30\,{\rm{cm}}\), \(AC = 40\,{\rm{cm}}\). Kẻ đường cao \(AH\)\(\left( {H \in BC} \right)\). Độ dài đường cao \(AH\) là
Câu 28 :
\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài đoạn thẳng \(BK\) là
Câu 29 :
\(\Delta ABC\) vuông tại \(A\) có \(\widehat B = 60^\circ \), \(BD\) là phân giác \(\widehat B\), \(AC = 18\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là
Câu 31 :
Nếu \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}=\widehat{D}\) , \(\widehat{C}=\widehat{F}\) thì
Câu 32 :
Nếu \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}={{70}^{\circ }}\) , \(\widehat{C}={{60}^{\circ }}\) , \(\widehat{E}={{50}^{\circ }}\) , \(\widehat{F}={{70}^{\circ }}\) thì
Câu 33 :
Cho \(\Delta ABC\,\backsim \,\Delta {A}'{B}'{C}'\) (g – g ). Khẳng định nào sau đây đúng
Câu 35 :
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu
Câu 36 :
Nếu \(\Delta ABC\) và \(\Delta MNP\) có \(\widehat{A}=\widehat{N}\) ; \(\widehat{B}=\widehat{M}\) thì
Lời giải và đáp án
Câu 1 :
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Đáp án : C Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 2 :
Cho tam giác \(ABC\) cân tại \(A\) , đường cao \(CE\) . Tính \(AB\) , biết \(BC = 24\) cm và \(BE = 9\) cm.
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 3 :
Cho hình vẽ:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Tam giác ABN và tam giác AIP có: \(\widehat N = \widehat {IPA} = {90^0},\widehat {BAN}\;chung\) Do đó, \(\Delta ABN \backsim \Delta AIP \Rightarrow \frac{{AB}}{{AI}} = \frac{{AN}}{{AP}} \Rightarrow AI.AN = AP.AB\) Tam giác AMB và tam giác IPB có: \(\widehat M = \widehat {IPB} = {90^0},\widehat {ABM}\;chung\) Do đó, \(\Delta AMB \backsim \Delta IPB \Rightarrow \frac{{AB}}{{BI}} = \frac{{BM}}{{BP}} \Rightarrow AB.BP = BI.BM\) Vậy \(AI.AN + BI.BM = AP.AB + AB.PB = AB\left( {AP + PB} \right) = A{B^2}\)
Câu 4 :
Cho hình vẽ:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Tam giác ADO và tam giác ECO có: \(\widehat {DAO} = \widehat {CEO} = {90^0},\widehat {AOD} = \widehat {COE}\) (hai góc đối đỉnh)Do đó, \(\Delta ADO \backsim \Delta ECO \Rightarrow \frac{{AD}}{{EC}} = \frac{{DO}}{{CO}} \Rightarrow \frac{4}{x} = \frac{5}{6} \Rightarrow x = 4,8\) Áp dụng định lý Pytago vào tam giác ADO vuông tại A ta có: \(A{D^2} + A{O^2} = O{D^2}\) \( \Rightarrow A{O^2} = D{O^2} - A{D^2} = 9 \Rightarrow AO = 3\) Tam giác CEO và tam giác CAB có: \(\widehat {CEO} = \widehat {CAB} = {90^0},\widehat {C}\;chung\) Do đó, \(\Delta CEO \backsim \Delta CAB \Rightarrow \frac{{CO}}{{CB}} = \frac{{CE}}{{CA}} \Rightarrow \frac{{CO}}{{EC + EB}} = \frac{{CE}}{{CO + AO}} \Rightarrow \frac{6}{{4,8 + y}} = \frac{{4,8}}{{6 + 3}} \Rightarrow y = 6,45\)
Câu 5 :
Cho tam giác ABC cân tại A, \(AC = 20cm,BC = 24cm.\) Các đường cao AD và CE cắt nhau tại H. Khi đó,
Đáp án : C Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 6 :
Cho tam giác ABC vuông tại A, đường cao AH chia đoạn BC thành hai đoạn thẳng \(HB = 7cm,HC = 18cm.\) Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác thành 2 phần có diện tích bằng nhau. Khi đó,
Đáp án : A Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 7 :
Cho hình bình hành ABCD \(\left( {AC > AB} \right)\) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD và H là hình chiếu của B trên AC.Chọn đáp án đúng.
Đáp án : D Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 8 :
Cho tam giác ABC vuông tại A. Lấy một điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. Khi đó:
Đáp án : C Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 9 :
Cho tam giác ABC cân tại A, đường cao CE. Biết rằng \(BE = 3cm,BC = 8cm.\) Độ dài đoạn thẳng AB là:
Đáp án : C Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 10 :
Cho tam giác ABC vuông tại A có \(\widehat B = {30^0}\), tam giác MNP vuông tại M có \(\widehat N = {60^{0.}}\)Chọn đáp án đúng.
Đáp án : A Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Tam giác ABC vuông tại A nên \(\widehat B + \widehat C = {90^0} \Rightarrow \widehat C = {90^0} - \widehat B = {60^0}\)Tam giác ABC và tam giác MNP có: \(\widehat A = \widehat M = {90^0},\widehat C = \widehat N\left( { = {{60}^0}} \right)\)Do đó, \(\Delta ABC \backsim \Delta MPN(g.g) \Rightarrow \frac{{AB}}{{MP}} = \frac{{BC}}{{PN}} \Rightarrow AB.PN = MP.BC\)
Câu 11 :
Cho hình vẽ:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Ta có: \(\widehat {EDH} + \widehat {HDF} = \widehat F + \widehat {HDF}\left( { = {{90}^0}} \right) \Rightarrow \widehat {EDH} = \widehat F\)Tam giác EDH và tam giác DFH có: \(\widehat {EHD} = \widehat {FHD} = {90^0},\widehat {EDH} = \widehat F\)Do đó, \(\Delta EDH \backsim \Delta DFH(g.g)\) nên \(\frac{{DH}}{{FH}} = \frac{{EH}}{{DH}} \Rightarrow D{H^2} = EH.FH\)
Câu 12 :
Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho \(AM = 2m,AM \bot AB\) và đo được góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A’M’B’ vuông tại A’ có \(A'M' = 1cm,\;\widehat {A'M'B'} = \widehat {AMB}\) và đo được \(A'B' = 5cm\) (hình vẽ dưới). Khoảng cách từ A đến B bằng:
Đáp án : D Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Đổi \(1cm = 0,01m;\;5cm = 0,05m\)Tam giác AMB và tam giác A’M’B’ có: \(\widehat {BAM} = \widehat {B'A'M'} = {90^0},\widehat {AMB} = \widehat {A'M'B'}\) Do đó,\(\Delta AMB \backsim \Delta A'M'B'(g.g)\)Suy ra, \(\frac{{AB}}{{A'B'}} = \frac{{AM}}{{A'M'}} = \frac{2}{{0,01}} = 200 \Rightarrow AB = 200.A'B' = 10\left( m \right)\)
Câu 13 :
Cho hình vẽ:
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Ta có: \(\widehat A + \widehat C = \widehat A + \widehat E\left( { = {{90}^0}} \right) \Rightarrow \widehat C = \widehat E\)Xét tam giác ABE và tam giác DCB có: \(\widehat {ABE} = \widehat {DBC} = {90^0},\widehat E = \widehat C\)Do đó, \(\Delta ABE \backsim \Delta DBC(g.g)\) Do đó, \(\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\)
Câu 14 :
Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định nào sau đây đúng?
Đáp án : A Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Câu 15 :
Cho các mệnh đề sau. Chọn câu đúng. (I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Đáp án : A Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.Vậy (I) đúng, (II) sai.
Câu 16 :
Cho hình vẽ:
Đáp án : A Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Tam giác IPQ và tam giác IMN có: \(\widehat I\;chung,\;\widehat {IPQ} = \widehat M = {90^0}\)Do đó, \(\Delta IPQ \backsim \Delta IMN(g.g)\)
Câu 17 :
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\widehat B = \widehat F\)Chọn đáp án đúng
Đáp án : B Phương pháp giải :
Sử dụng kiến thức trường hợp đồng dạng thứ ba của tam giác vuông: Nếu tam vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
Lời giải chi tiết :
Tam giác ABC và tam giác DEF có: \(\widehat {BAC} = \widehat {EDF} = {90^0},\widehat B = \widehat F\) nên \(\Delta ABC \backsim \Delta DFE(g.g)\)
Câu 18 :
Nếu \(\Delta MNP\) và \(\Delta DEF\) có 🌠\(\widehat{M}=\widehat{D}=90{}^\circ \) , \(\widehat{P}=50{}^\circ \) . Để \(\Delta MNP\,\backsim \,\Delta DEF\) thì cần thêm điều kiện
Đáp án : D Phương pháp giải :
: Áp dụng trường hợp đồng dạng thứ ba của hai tam giác.
Lời giải chi tiết :
\(\Delta MNP\) có \(\widehat{M}=90{}^\circ \) , \(\widehat{P}=50{}^\circ \) \(\Rightarrow \widehat{N}=40{}^\circ \) .
\(\Delta MNP\) và \(\Delta DEF\) có \(\widehat{M}=\widehat{D}\) (gt) cần thêm điều kiện \(\widehat{E}=40{}^\circ \) thì \(\Rightarrow \widehat{N}=\widehat{E}=40{}^\circ \)
Lúc này \(\Delta MNP\backsim \Delta DEF\) (g – g ).
Câu 19 :
Nếu \(\Delta DEF\) và \(\Delta SRK\) có \(\widehat{D}=70{}^\circ \) ; \(\widehat{E}=60{}^\circ \) ; \(\widehat{S}=70{}^\circ \) ; \(\widehat{K}=50{}^\circ \) thì
Đáp án : A Phương pháp giải :
Chứng minh \(\Delta DEF\,\backsim \,\Delta SRK\) (g – g) rồi suy ra các tỉ số đồng dạng
Lời giải chi tiết :
\(\Delta DEF\) có \(\widehat{D}+\widehat{E}+\widehat{F}=180{}^\circ \Rightarrow 70{}^\circ +60{}^\circ +\widehat{F}=180{}^\circ \Rightarrow \widehat{F}=50{}^\circ \) . \(\Delta DEF\) và \(\Delta SRK\) có \(\widehat{D}=\widehat{S}=70{}^\circ \) và \(\widehat{F}=\widehat{K}=50{}^\circ \) nên \(\Delta DEF\,\backsim \,\Delta SRK\) (g – g).Suy ra \(\frac{DE}{SR}=\frac{DF}{SK}=\frac{EF}{RK}\) .
Đáp án : D Phương pháp giải :
Chứng minh \(\Delta ABC\) và \(\Delta HBA\) đồng dạng với nhau theo trường hợp góc – góc.
Lời giải chi tiết :
\(\Delta ABC\) và \(\Delta HBA\) có góc \( \widehat{B}\) chung, \(\widehat{BAC}=\widehat{AHB}=90{}^\circ \) nên \(\Delta ABC\,\backsim \Delta HBA\) (g – g)
Câu 21 :
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Hệ thức nào sau đây đúng?
Đáp án : C Phương pháp giải :
Chứng minh \(\Delta HCA\,\, \backsim \,\Delta HAB\)nên suy ra hệ thức đúng.
Lời giải chi tiết :
Câu 22 :
Cho hình thang \(ABCD\) \(\left( {AB\,{\rm{//}}\,CD} \right)\), \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\). Khẳng định nào sau đây đúng
Đáp án : C Phương pháp giải :
Chứng minh (g – g )
Lời giải chi tiết :
Câu 23 :
Cho hình thang \(ABCD\,\,\left( {AB\,{\rm{//}}\,CD} \right)\), \(\widehat {ADB} = \widehat {BCD}\), \(AB = 2\,{\rm{cm}}\), \(BD = \sqrt 5 \,{\rm{cm}}\). Độ dài đoạn thẳng \(CD\) là
Đáp án : D Phương pháp giải :
Chứng minh \(\Delta \,ADB\,\, \backsim \Delta BCD\) (g – g ) nên suy ra tỉ số các cạnh tương ứng từ đó tính độ dài cạnh CD.
Lời giải chi tiết :
Vì \(AB\,{\rm{//}}\,CD \Rightarrow \widehat {ABD} = \widehat {BDC}\) (cặp góc so le trong).Xét \(\Delta \,ADB\) và \(\Delta \,BCD\) có:\(\widehat {ABD} = \widehat {BDC}\) (chứng minh trên); \(\widehat {ADB} = \widehat {BCD}\) (gt)Nên \(\Delta \,ADB\, \backsim \Delta BCD\) (g – g ).\( \Rightarrow \frac{{AB}}{{BD}} = \frac{{DB}}{{CD}} \Leftrightarrow \frac{2}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{{CD}} \Leftrightarrow CD = \frac{{\sqrt 5 .\sqrt 5 }}{2} = \frac{5}{2} = 2,5\,\,\left( {{\rm{cm}}} \right)\).
Câu 24 :
Cho hình thang vuông \(ABCD\),💖 \(\left( {\widehat A = \widehat D = 90^\circ } \right)\) có \(DB \bot BC\), \(AB = 4\,{\rm{cm}}\), \(CD = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là
Đáp án : D Phương pháp giải :
Chứng minh \(\Delta \,ABD\,\, \backsim \Delta BDC\) (g – g) nên suy ra tỉ số các cạnh tương ứng và độ dài của cạnh BD.
Lời giải chi tiết :
Câu 25 :
Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\) biết \(BH = 4\,{\rm{cm}}\), \(CH = 9\,{\rm{cm}}\). Độ dài đoạn thẳng \(AH\) là
Đáp án : C Phương pháp giải :
Chứng minh \(\Delta HCA\, \backsim \Delta HAB\) (g – g ) suy ra tỉ số các cạnh tương ứng và độ dài của AH.
Lời giải chi tiết :
Câu 26 :
Cho hình vẽ, biết \(\widehat {ACB} = \widehat {ABD}\), \(AB = 3\,{\rm{cm}}\), \(AC = 4,5\,{\rm{cm}}\). Độ dài đoạn thẳng \(AD\) là
Đáp án : A Phương pháp giải :
Chứng minh 🅠\(\Delta ABC\, \backsim \Delta ADB\) (g– g ) \( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{AB}} \Leftrightarrow AD = \frac{{AB.AB}}{{AC}} = \frac{{3.3}}{{4,5}} = 2\,({\rm{cm)}}\) Lời giải chi tiết :
Xét \(\Delta ABC\) và \(\Delta ADB\) có:Góc \(A\) chung, \(\widehat {ACB} = \widehat {ABD}\) (gt)Nên \(\Delta ABC\, \backsim \,\Delta ADB\) (g– g ) \( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{AB}} \Leftrightarrow AD = \frac{{AB.AB}}{{AC}} = \frac{{3.3}}{{4,5}} = 2\,({\rm{cm)}}\)
Câu 27 :
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 30\,{\rm{cm}}\), \(AC = 40\,{\rm{cm}}\). Kẻ đường cao \(AH\)\(\left( {H \in BC} \right)\). Độ dài đường cao \(AH\) là
Đáp án : B Phương pháp giải :
Áp dụng định lí Pythagore và hai tam giác \(\Delta ABC\) và \(\Delta HBA\) đồng dạng với nhau để tìm độ dài của đường cao AH.
Lời giải chi tiết :
.
Câu 28 :
\(\Delta ABC\) cân tại \(A\), hai đường cao \(AH\) và \(BK\), cho \(BC = 6\,{\rm{cm}}\), \(AB = 5\,{\rm{cm}}\). Độ dài đoạn thẳng \(BK\) là
Đáp án : B Phương pháp giải :
Chứng minh 🍌\(\Delta AHC \backsim \Delta BKC\) ( g – g )\( \Rightarrow \frac{{AH}}{{BK}} = \frac{{CA}}{{CB}}\,\,\,\, \Leftrightarrow BK = \frac{{AH.CB}}{{CA}} = \frac{{4.6}}{5} = 4,8\left( {{\rm{cm}}} \right)\,\) Lời giải chi tiết :
Vì \(\Delta ABC\) cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến ứng với cạnh ♕\(BC\) \( \Rightarrow HB = HC = \frac{{BC}}{2} = \frac{6}{2} = 3\,\left( {{\rm{cm}}} \right)\). Áp dụng định lí Pytago vào tam giác vuông \(ABH\) ta có:\(A{H^2} = A{B^2} - H{B^2} = {5^2} - {3^2} = 16\) \( \Rightarrow AH = 4\,\left( {{\rm{cm}}} \right)\)Xét \(\Delta AHC\) và \(\Delta BKC\) có: góc \(C\) chung; \(\widehat {AHC} = \widehat {BKC} = 90^\circ \).Nên \(\Delta AHC \backsim \Delta BKC\) ( g – g )\( \Rightarrow \frac{{AH}}{{BK}} = \frac{{CA}}{{CB}}\,\,\,\, \Leftrightarrow BK = \frac{{AH.CB}}{{CA}} = \frac{{4.6}}{5} = 4,8\left( {{\rm{cm}}} \right)\,\).
Câu 29 :
\(\Delta ABC\) vuông tại \(A\) có \(\widehat B = 60^\circ \), \(BD\) là phân giác \(\widehat B\), \(AC = 18\,{\rm{cm}}\). Độ dài đoạn thẳng \(BD\) là
Đáp án : A Phương pháp giải :
Chứng minh \(\Delta ABC\, \backsim \,\Delta ADB\) ( g – g ) suy ra tỉ số các cạnh từ đó tính độ dài của cạnh BD.
Lời giải chi tiết :
Đáp án : A Phương pháp giải :
Chứng minh hai tam giác đồng dạng từ đó suy ra các cạnh tương ứng tỉ lệ và tính độ dài của x.
Lời giải chi tiết :
Ta có \(\frac{{AB}}{{AC}} = \frac{6}{9} = \frac{2}{3},\frac{{AC}}{{CD}} = \frac{9}{{13,5}} = \frac{2}{3}\) \( \Rightarrow \frac{{AB}}{{AC}} = \frac{{AC}}{{CD}} = \frac{2}{3}\)
Xét \(\Delta ABC\) và \(\Delta CAD\) có: \(\frac{{AB}}{{AC}} = \frac{{AC}}{{CD}}(cmt),\widehat {BAC} = \widehat {ACD}\) (so le trong, AB//CD ) \(\begin{array}{l} \Rightarrow \Delta ABC \backsim \Delta CAD(c - g - c)\\ \Rightarrow \frac{{AB}}{{AC}} = \frac{{CA}}{{CD}} = \frac{{BC}}{{AD}} = \frac{2}{3}\\ \Rightarrow \frac{{10}}{x} = \frac{2}{3} \Rightarrow x = \frac{{10.3}}{2} = 15\end{array}\)
Câu 31 :
Nếu \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}=\widehat{D}\) , \(\widehat{C}=\widehat{F}\) thì
Đáp án : A Phương pháp giải :
Áp dụng trường hợp đồng dạng thứ ba của tam giác: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết :
Xét \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}=\widehat{D}\) , \(\widehat{C}=\widehat{F}\) nên \(\Delta ABC\backsim \Delta DEF\) (g – g)
Câu 32 :
Nếu \(\Delta ABC\) và \(\Delta DEF\) có \(\widehat{A}={{70}^{\circ }}\) , \(\widehat{C}={{60}^{\circ }}\) , \(\widehat{E}={{50}^{\circ }}\) , \(\widehat{F}={{70}^{\circ }}\) thì
Đáp án : B Phương pháp giải :
Áp dụng trường hợp đồng dạng thứ ba của tam giác: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
Lời giải chi tiết :
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}={{180}^{\circ }}\Rightarrow {{70}^{\circ }}+\widehat{B}+{{60}^{\circ }}={{180}^{\circ }}\Leftrightarrow \widehat{B}={{50}^{\circ }}\) . \(\Delta ABC\) và \(\Delta FED\) có \(\widehat{A}=\widehat{F}=70{}^\circ \) , \(\widehat{B}=\widehat{E}=50{}^\circ \) nên \(\Delta ABC\,\backsim \,\Delta FED\) (g – g ).
Câu 33 :
Cho \(\Delta ABC\,\backsim \,\Delta {A}'{B}'{C}'\) (g – g ). Khẳng định nào sau đây đúng
Đáp án : C Phương pháp giải :
Sử dụng hai tam giác đồng dạng
Lời giải chi tiết :
\(\Delta ABC\,\backsim \,\Delta {A}'{B}'{C}'\) suy ra \(\frac{AB}{AC}=\frac{{A}'{B}'}{{A}'{C}'}\)
Đáp án : A Phương pháp giải :
Quan sát hình vẽ để nhận biết hai tam giác đồng dạng thoe trường hợp thứ ba.
Lời giải chi tiết :
\(\Delta HIG\) và \(\Delta DEF\) có \(\widehat{H}=\widehat{D}\) , \(\widehat{I}=\widehat{E}\) (gt) nên \(\Delta HIG\,\,\backsim \Delta DEF\) (g – g ).
Câu 35 :
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu
Đáp án : B Phương pháp giải :
Sử dụng hai tam giác đồng dạng theo trường hợp thứ ba.
Lời giải chi tiết :
Hai tam giác đồng dạng với nhau theo trường hợp góc – góc nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia.
Câu 36 :
Nếu \(\Delta ABC\) và \(\Delta MNP\) có \(\widehat{A}=\widehat{N}\) ; \(\widehat{B}=\widehat{M}\) thì
Đáp án : D Phương pháp giải :
Chứng minh hai tam giác \(\Delta ABC\) và \(\Delta MNP\) đồng dạng với nhau theo trường hợp góc – góc.
Lời giải chi tiết :
\(\Delta ABC\) và \(\Delta NMP\) có \(\widehat{A}=\widehat{N}\) , \(\widehat{B}=\widehat{M}\) nên \(\Delta ABC\backsim \Delta NMP\) (g – g ).
|