Giải bài tập 11 trang 128 SGK Toán 9 tập 2 - Kết nối tri thứcTứ giác ABCD có hai góc đối diện B và D vuông, hai góc kia không vuông. a) Chứng minh rằng có một đường tròn đi qua bốn điểm A, B, C và D. Ta gọi đó là đường tròn (C). b) Gọi I và K lần lượt là trung điểm của các đường chéo AC và BD của tứ giác. Chứng minh rằng (IK bot BD). c) Kí hiệu các tiếp tuyến của đường tròn (C) tại A, B và C lần lượt là a, b và c. Giả sử b cắt a và c theo thứ tự tại E và F. Chứng minh rằng tứ giác AEFC là một hình thang. d) Chứng minh rằng (EF = AE + CF).
Toán - Văn - Anh
Quảng cáo
Đề bài Tứ giác ABCD có hai góc đối diện B và D vuông, hai góc kia không vuông. a) Chứng minh rằng có một đường tròn đi qua bốn điểm A, B, C và D. Ta gọi đó là đường tròn (C). b) Gọi I và K lần lượt là trung điểm của các đường chéo AC và BD của tứ giác. Chứng minh rằng \(IK \bot BD\). c) Kí hiệu các tiếp tuyến của đường tròn (C) tại A, B và C lần lượt là a, b và c. Giả sử b cắt a và c theo thứ tự tại E và F. Chứng minh rằng tứ giác AEFC là một hình thang. d) Chứng minh rằng \(EF = AE + CF\).Video hướng dẫn giải Phương pháp giải - Xem chi tiết
a) Chứng minh tam giác ABC vuông tại B, tam giác ADC vuông tại D nên đường tròn đường kính AC đi qua bốn điểm A, B, C, D.
b) + Chứng minh I là tâm đường tròn đường kính AC.
+ Chứng minh tam giác IBD cân tại I nên IK là đường trung tuyến đồng thời là đường cao.
c) Chứng minh \(FC \bot AC\), \(AE \bot AC\) nên FC//AE. Do đó, tứ giác AEFC là hình thang.
d) Chứng minh \(FC = FB\), \(EA = EB\) nên \(EF = AE + CF\).
Lời giải chi tiết
Quảng cáo
Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí |